Numerical solution of the discrete BHH-equation in the normal case
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 367-373
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the solution of the semilinear matrix equation $X-A\overline XB=C$ can be reduced to solving the classical Stein equation. The normal case means that the coefficients on the left-hand side of the resulting equation are normal matrices. We propose a method for solving the original semilinear equation in the normal case that permits to almost halve the execution time for equations of order $n=3000$ compared to the library function dlyap, which solves Stein equations in Matlab.
@article{SJVM_2018_21_4_a1,
author = {Kh. D. Ikramov and Yu. O. Vorontsov},
title = {Numerical solution of the discrete {BHH-equation} in the normal case},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {367--373},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/}
}
TY - JOUR AU - Kh. D. Ikramov AU - Yu. O. Vorontsov TI - Numerical solution of the discrete BHH-equation in the normal case JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 367 EP - 373 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/ LA - ru ID - SJVM_2018_21_4_a1 ER -
Kh. D. Ikramov; Yu. O. Vorontsov. Numerical solution of the discrete BHH-equation in the normal case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 367-373. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/