Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_4_a1, author = {Kh. D. Ikramov and Yu. O. Vorontsov}, title = {Numerical solution of the discrete {BHH-equation} in the normal case}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {367--373}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/} }
TY - JOUR AU - Kh. D. Ikramov AU - Yu. O. Vorontsov TI - Numerical solution of the discrete BHH-equation in the normal case JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 367 EP - 373 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/ LA - ru ID - SJVM_2018_21_4_a1 ER -
Kh. D. Ikramov; Yu. O. Vorontsov. Numerical solution of the discrete BHH-equation in the normal case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 367-373. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/
[1] Bevis J. H., Hall F. J., Hartwig R. H., “Consimilarity and the matrix equation $AX-XB=C$”, Proc. Third Auburn Matrix Theory Conference, North-Holland, Amsterdam, 1987, 51–64 | MR
[2] Zhou B., Lam J., Duan G.-R., “Toward solution of matrix equation $X=Af(X)B+C$”, Linear Algebra Appl., 435:6 (2011), 1370–1398 | DOI | MR | Zbl
[3] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR
[4] Golub G. H., Van Loan C. F., Matrix Computations, The Johns Hopkins University Press, Baltimore, Maryland, 1983 | MR | Zbl
[5] Ikramov Kh. D., “Normality conditions for linear matrix equations of the Stein type”, Doklady Mathematics, 91:1 (2015), 50–52 | DOI | DOI | MR | Zbl
[6] Ikramov Kh. D., “Normality conditions for semilinear matrix operators of the Stein type”, Num. Anal. and Appl., 8:4 (2015), 299–303 | DOI | DOI | MR | Zbl