Numerical solution of the discrete BHH-equation in the normal case
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 367-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the solution of the semilinear matrix equation $X-A\overline XB=C$ can be reduced to solving the classical Stein equation. The normal case means that the coefficients on the left-hand side of the resulting equation are normal matrices. We propose a method for solving the original semilinear equation in the normal case that permits to almost halve the execution time for equations of order $n=3000$ compared to the library function dlyap, which solves Stein equations in Matlab.
@article{SJVM_2018_21_4_a1,
     author = {Kh. D. Ikramov and Yu. O. Vorontsov},
     title = {Numerical solution of the discrete {BHH-equation} in the normal case},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - Yu. O. Vorontsov
TI  - Numerical solution of the discrete BHH-equation in the normal case
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 367
EP  - 373
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/
LA  - ru
ID  - SJVM_2018_21_4_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A Yu. O. Vorontsov
%T Numerical solution of the discrete BHH-equation in the normal case
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 367-373
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/
%G ru
%F SJVM_2018_21_4_a1
Kh. D. Ikramov; Yu. O. Vorontsov. Numerical solution of the discrete BHH-equation in the normal case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 367-373. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a1/

[1] Bevis J. H., Hall F. J., Hartwig R. H., “Consimilarity and the matrix equation $AX-XB=C$”, Proc. Third Auburn Matrix Theory Conference, North-Holland, Amsterdam, 1987, 51–64 | MR

[2] Zhou B., Lam J., Duan G.-R., “Toward solution of matrix equation $X=Af(X)B+C$”, Linear Algebra Appl., 435:6 (2011), 1370–1398 | DOI | MR | Zbl

[3] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR

[4] Golub G. H., Van Loan C. F., Matrix Computations, The Johns Hopkins University Press, Baltimore, Maryland, 1983 | MR | Zbl

[5] Ikramov Kh. D., “Normality conditions for linear matrix equations of the Stein type”, Doklady Mathematics, 91:1 (2015), 50–52 | DOI | DOI | MR | Zbl

[6] Ikramov Kh. D., “Normality conditions for semilinear matrix operators of the Stein type”, Num. Anal. and Appl., 8:4 (2015), 299–303 | DOI | DOI | MR | Zbl