Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a~random medium
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 349-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical-statistical estimates of correlation characteristics and averaged angle near distributions of the radiation intensity field, passing throw a random medium are obtained. Comparative investigations were performed for an elementary Poisson field and for the “realistic” field of the medium optical density. The obtained estimates confirm the hypothesis about a strong dependence of investigated values on the correlation scale and the one-dimensional distribution of the medium density field.
@article{SJVM_2018_21_4_a0,
     author = {A. Yu. Ambos and G. A. Mikhailov},
     title = {Estimation by {Monte} {Carlo} method of functional characteristics of the radiation intensity field passing throw a~random medium},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {349--365},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a0/}
}
TY  - JOUR
AU  - A. Yu. Ambos
AU  - G. A. Mikhailov
TI  - Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a~random medium
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 349
EP  - 365
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a0/
LA  - ru
ID  - SJVM_2018_21_4_a0
ER  - 
%0 Journal Article
%A A. Yu. Ambos
%A G. A. Mikhailov
%T Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a~random medium
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 349-365
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a0/
%G ru
%F SJVM_2018_21_4_a0
A. Yu. Ambos; G. A. Mikhailov. Estimation by Monte Carlo method of functional characteristics of the radiation intensity field passing throw a~random medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 4, pp. 349-365. http://geodesic.mathdoc.fr/item/SJVM_2018_21_4_a0/

[1] Ambos A. Y., Mikhailov G. A., “Effective averaging of stochastic radiative models based on Monte Carlo simulation”, Comput. Mathem. and Math. Phys., 56:5 (2016), 881–893 | DOI | DOI | MR | Zbl

[2] Mikhailov G. A., “Efficient Monte Carlo algorithms for evaluating the correlation characteristics of conditional mathematical expectations”, USSR Comput. Mathem. and Math. Phys., 17:1 (1977), 244–247 | DOI | MR | Zbl

[3] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Uchebnoe posobie, Izd. tsentr “Akademiya”, M., 2006

[4] Woodcock E., Murphy T., Hemmings P., Longworth S., “Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry”, Proc. Conf. Applications of Computing Methods to Reactor Problems, 1965, 557–557

[5] Ambos A. Yu., Mikhailov G. A., “Solution of radiative transfer theory problems for “realistic” models of random media using the Monte Carlo method”, Russ J. Num. Anal. Math. Model., 31:3 (2016), 127–136 | MR | Zbl

[6] Ambos A. Yu., “Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer”, Numerical Analysis and Applications, 9:1 (2016), 12–23 | DOI | DOI | MR | Zbl

[7] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., Darbinjan R. A., Kargin B. A., Elepov B. S., The Monte Carlo Methods in Atmospheric Optics, Springer, Berlin–Heidelberg, 1980 | MR | MR

[8] Feigelson E. M., Krasnokutskaya L. D., Potoki solnechnogo izlucheniya i oblaka, Gidrometeoizdat, L., 1978

[9] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[10] Mikhailov G. A., Optimization of Weighted Monte Carlo Methods, Springer-Verlag, 1992 | MR

[11] Borovkov A. A., Mathematical Statistics, Gordon and Breach, New York, 1998 | MR | Zbl

[12] Lotova G. Z., “Monte Carlo algorithms for calculation of diffusive characteristics of an electron avalanche in gases”, Russ J. Num. Anal. Math. Model., 31:6 (2011), 369–377 | MR

[13] Switzer P., “A random set process in the plane with a Markovian property”, Ann. Math. Statist., 36 (1965), 1859–1863 | DOI | MR | Zbl

[14] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[15] Ambos A. Yu., Mikhailov G. A., “Statistical modelling of the exponentially correlated multivariate random field”, Russ J. Num. Anal. Math. Model., 26:3 (2011), 213–232 | MR

[16] Serra J., Image Analysis and Mathematical Morphology, Academic press inc., London, 1982 | MR | Zbl

[17] Mikhailov G. A., Troinikov B. C., “Modelirovanie sluchainykh polei pri reshenii stokhasticheskikh zadach metodom Monte-Karlo (svoistva realizatsii”, Aktualnye problemy v vychislitelnoi i prikladnoi matematike, Nauka, Novosibirsk, 1983, 122–127

[18] Ambos A. Y., Mikhailov G. A., “New computational model of an isotropic “broken” exponentially correlated random field”, Doklady Mathematics, 94:1, July (2016), 411–414 | DOI | DOI | MR | MR | Zbl

[19] Kullback S., Information Theory and Statistics, Wiley, New York; Chapman and Hall, London, 1959 | MR | Zbl

[20] Zuev V. E., Titov G. A., Atmospheric Optics and Climate, Spectr, Tomsk, 1996