Mixed methods for optimal control problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 333-343

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate a posteriori error estimates of a mixed finite element method for elliptic optimal control problems with an integral constraint. The gradient for our method belongs to the square integrable space instead of the classical $H(\mathrm{div};\Omega)$ space. The state and co-state are approximated by the $P^2_0$-$P_1$ (velocity-pressure) pair, and the control variable is approximated by piecewise constant functions. Using a duality argument method and an energy method, we derive residual a posteriori error estimates for all variables.
@article{SJVM_2018_21_3_a6,
     author = {T. Hou},
     title = {Mixed methods for optimal control problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {333--343},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/}
}
TY  - JOUR
AU  - T. Hou
TI  - Mixed methods for optimal control problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 333
EP  - 343
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/
LA  - ru
ID  - SJVM_2018_21_3_a6
ER  - 
%0 Journal Article
%A T. Hou
%T Mixed methods for optimal control problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 333-343
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/
%G ru
%F SJVM_2018_21_3_a6
T. Hou. Mixed methods for optimal control problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 333-343. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/