Mixed methods for optimal control problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 333-343
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we investigate a posteriori error estimates of a mixed finite element method for elliptic optimal control problems with an integral constraint. The gradient for our method belongs to the square integrable space instead of the classical $H(\mathrm{div};\Omega)$ space. The state and co-state are approximated by the $P^2_0$-$P_1$ (velocity-pressure) pair, and the control variable is approximated by piecewise constant functions. Using a duality argument method and an energy method, we derive residual a posteriori error estimates for all variables.
@article{SJVM_2018_21_3_a6,
author = {T. Hou},
title = {Mixed methods for optimal control problems},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {333--343},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/}
}
T. Hou. Mixed methods for optimal control problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 333-343. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a6/