Generating boundary conditions for the tsunami propagation calculation on imbedded grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 315-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary conditions that are used for the numerical modeling of the tsunami generation and propagation have been studied. This study focuses on the generating boundary conditions which make it possible to simulate the tsunami wave with desired characteristics (amplitude, time period and, generally speaking, waveform). Taking into account the fact that the water flow velocity in the propagating tsunami wave is uniquely determined by its height and the ocean depth, it is possible to simulate the wave which propagates inward from the boundary into the area of simulation. This can be done by setting the wave height and the water flow velocity over the boundary. By such a way the numerical modeling of the tsunami propagation from a source up to the coast was implemented on a sequence of refining grids. In the conducted numerical experiment, the wave parameters are transmitted from a bigger area into a subarea via boundary conditions. In addition, such a method allows generating a wave that has certain characteristics on a specified line.
@article{SJVM_2018_21_3_a5,
     author = {K. Hayashi and An. Marchuk and A. Vazhenin},
     title = {Generating boundary conditions for the tsunami propagation calculation on imbedded grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {315--331},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a5/}
}
TY  - JOUR
AU  - K. Hayashi
AU  - An. Marchuk
AU  - A. Vazhenin
TI  - Generating boundary conditions for the tsunami propagation calculation on imbedded grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 315
EP  - 331
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a5/
LA  - ru
ID  - SJVM_2018_21_3_a5
ER  - 
%0 Journal Article
%A K. Hayashi
%A An. Marchuk
%A A. Vazhenin
%T Generating boundary conditions for the tsunami propagation calculation on imbedded grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 315-331
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a5/
%G ru
%F SJVM_2018_21_3_a5
K. Hayashi; An. Marchuk; A. Vazhenin. Generating boundary conditions for the tsunami propagation calculation on imbedded grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 315-331. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a5/

[1] Stoker Dzh. Dzh., Volny na vode. Matematicheskaya teoriya i prilozheniya, Gosudarstvennoe izd-vo inostrannoi literatury, M., 1959

[2] Titov V. V., “Numerical modeling of tsunami propagation by using variable grids”, Tsunamis: their science and hazard mitigation, Proc. of the Int. Tsunami Symposium (July 31 – August 3, 1989), ed. V. K. Gusiakov, Computing Center, Siberian Division, USSR Academy of Sciences, Novosibirsk, 1990, 46–51

[3] Hasan Md. M., Rahman S. M. M., Mahamud U., “Numerical modeling for the propagation of tsunami wave and corresponding inundation”, IOSR J. of Mechanical and Civil Engineering, 12:2, Ver. IV (2015), 55–62

[4] Shigihara Y., Fujima K., “Development of tsunami model integrating several different grid systems”, Proc. of the Fifteenth World Conference on Earthquake Engineering, Portugal, Lisbon, 2012

[5] Son S., Lynett P. J., Kim D. H., “Nested and multi-physics modeling of tsunami evolution from generation to inundation”, Ocean Modelling, 38 (2011), 96–113 | DOI

[6] Karim Md. F., Ismail A. I., Meah M. A., “A boundary fitted nested grid model for tsunami computation along Penang island in peninsular Malaysia”, Int. J. of Mathematical, Computational, Physical, Electrical and Computer Engineering, 8:2 (2014), 277–284

[7] Gusyakov V. K., Fedotova Z. I., Khakimzyanov G. S., Chubarov L. B., Shokin Yu. I., “Some approaches to local modelling of tsunami wave runup on a coast”, Russian J. of Numerical Analysis and Mathematical Modelling, 23:6 (2008), 551–565 | DOI | MR | Zbl

[8] Harig S., Chaeroni C., Pranowo W. S., Behrens J., “Tsunami Simulations on several scales: Comparison of approaches with unstructured meshes and nested grids”, Ocean Dynamics, 58:5 (2008), 429–440 | DOI

[9] GEBCO Digital Atlas. 1903-Centenary Edition-2003, CDROM, British Oceanographic Data Centre, U.K., Liverpool, 2003, (Intergovernmental Oceanographic Commission, International Hydrographic Organization)

[10] Smith W. H. F., Sandwell D. T., “Global seafloor topography from satellite altimetry and ship depth soundings”, Science, 277:5334 (1997), 1956–1962 | DOI

[11] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Sib. otd-nie, Novosibirsk, 1983

[12] Marchuk An. G., “Estimating the height of a tsunami wave propagating over a parabolic bottom in the ray approximation”, Num. Anal. and Appl., 7:1 (2017), 17–27 | DOI | MR | Zbl

[13] URL: http://jdoss1.jodc.go.jp/vpage/depth500_file.html

[14] Global Digital Elevation Model, URL: http://www.gdem.aster.ersdac.or.jp/search.jsp

[15] Lavrentiev M. M., Romanenko A. A., Oblaukhov K. K., Marchuk An. G., Lysakov K. F., Shadrin M. Yu., “FPGA based solution for fast tsunami wave propagation modeling”, Proc. of the Twenty-seventh (2017) Int. Ocean and Polar Engineering Conf. (June 25–30, 2017), USA, CA, San Francisco, 2017, 924–929