Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_3_a3, author = {A. I. Rozhenko}, title = {A comparison of radial basis functions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {273--292}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a3/} }
A. I. Rozhenko. A comparison of radial basis functions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 3, pp. 273-292. http://geodesic.mathdoc.fr/item/SJVM_2018_21_3_a3/
[1] Schaback R., “Native Hilbert spaces for radial basis functions. I”, New Developments in Approximation Theory, ISNM Int. Series Numer. Math., 132, eds. M. W. Muller, M. D. Buhmann, D. H. Mache, M. Felten, Birkhauser, Basel, 1999, 255–282 | MR | Zbl
[2] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Math. Comput., 54 (1990), 211–230 | DOI | MR | Zbl
[3] Wendland H., Scattered Data Approximation, Cambridge Monographs on Appl. and Comput. Math., 17, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[4] Powell M. J. D., The Theory of Radial Basis Function Approximation, Preprint/ DAMTP, NA11, Cambridge, 1990 | MR
[5] Schaback R., Wendland H., “Characterization and construction of radial basis functions”, Multivariate Approximation and Applications, eds. N. Din, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 1–24 | MR | Zbl
[6] Rozhenko A. I., Teoriya i algoritmy variatsionnoi splain-approksimatsii, ed. A. M. Matsokin, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005
[7] Kovalkov A. V., “Ob odnom algoritme postroeniya splainov s diskretnymi ogranicheniyami tipa neravenstv”, SERDIKA. B'lgarsko matematichesko spisanie, 9:4 (1983), 417–424 | MR | Zbl
[8] Rozhenko A. I., Fedorov E. A., “On the algorithm of smoothing by a spline with bilateral constraints”, Num. Anal. and Appl., 9:3 (2016), 257–266 | DOI | MR | MR | Zbl
[9] Atteia M., “Fonctions “spline” et noyaux reproduissants d'Aronszain–Bergman”, RAIRO, 4:3 (1970), 31–43 | DOI | MR | Zbl
[10] Bezhaev A. Yu., “Reproducing mappings and vector spline-functions”, Sov. J. Numer. Anal. Math. Modelling, 5:2 (1990), 91–109 | DOI | MR | Zbl
[11] Vasilenko V. A., Teoriya splain-funktsii, Izd-vo NGU, Novosibirsk, 1978
[12] Fasshauer G. E., “Green's functions: taking another look at kernel approximation, radial basis functions, and splines”, Approximation Theory XIII (San Antonio, 2010), Springer Proc. in Math., 13, eds. M. Neamtu, L. Schumaker, Springer, 2012, 37–63 | DOI | MR | Zbl
[13] Anselone P. M., Laurent P. J., “A general method for the construction of interpolating or smoothing spline-functions”, Numer. Math., 12 (1968), 66–82 | DOI | MR | Zbl
[14] Reinsch C. H., “Smoothing by spline functions. II”, Numer. Math., 16:5 (1971), 451–454 | DOI | MR | Zbl
[15] Gordonova V. I., Morozov V. A., “Chislennye algoritmy vybora parametra v metode regulyarizatsii”, Zhurn. vychisl. matem. i mat. fiziki, 13:3 (1973), 539–545 | MR | Zbl
[16] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. Novosibirsk Computing Center, Num. Anal., Special issue 3, NCC Publisher, Novosibirsk, 1993 ; Bezhaev A. Yu., Vasilenko V. A., Variational Theory of Splines, Kluwer Academic/Plenum Publishers, N.Y., 2001 | MR | Zbl
[17] Rozhenko A. I., “On optimal choice of spline-smoothing parameter”, Bull. Novosibirsk Computing Center. Series Num. Anal., 7, NCC Publisher, Novosibirsk, 1996, 79–86
[18] Rozhenko A. I., “A new method for finding an optimal smoothing parameter of the abstract smoothing spline”, J. Approx. Theory, 162 (2010), 1117–1127 | DOI | MR | Zbl
[19] Mokshin P. V., Rozhenko A. I., “O poiske optimalnogo parametra sglazhivayuschego splaina”, Sib. zhurn. industr. matem., 18:2(62) (2015), 63–73 | MR | Zbl
[20] Ivanova E. D., Uskorenie skhodimosti algoritma vybora parametra sglazhivaniya metodom asimptoticheskikh otsenok, Vypusknaya kvalifikatsionnaya rabota magistra, Novosibirskii gosudarstvennyi universitet, Mekhaniko-matematicheskii fakultet, Kafedra vychislitelnoi matematiki, Novosibirsk, 2011
[21] Rozhenko A. I., Abstraktnaya teoriya splainov, Ucheb. posobie, Izd. tsentr NGU, Novosibirsk, 1999
[22] Grubbs' test for outliers, https://en.wikipedia.org/wiki/Grubbs_test_for_outliers'>https://en.wikipedia.org/wiki/Grubbs'_test_for_outliers
[23] Netflix Prize, https://en.wikipedia.org/wiki/Netflix_Prize
[24] Dubrule O., Geostatistics for Seismic Data Integration in Earth Models, Society of Exploration Geophysicists European Association of Geoscientists and Engineers, Tulsa, 2003
[25] Micchelli C. A., “Interpolation of scattered data: distance matrices and conditionally positive definite functions”, Constr. Approx., 2 (1986), 11–22 | DOI | MR | Zbl
[26] Duchon J., Fonctions-spline a energie invariante par rotation, Preprint/ RR, 27, Grenoble, 1976
[27] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka. Leningr. otd-nie, L., 1991
[28] Volkov Yu. S., Miroshnichenko V. L., “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matem., 1:1 (1998), 77–88 | Zbl
[29] Bogdanov V. V., Karsten W. V., Miroshnichenko V. L., Volkov Yu. S., “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Central European J. Math., 11:4 (2013), 779–786 | MR | Zbl
[30] Mitas L., Mitasova H., “General variational approach to the interpolation problem”, Comput. Math. Appl., 16:12 (1988), 983–992 | DOI | MR | Zbl
[31] Mitasova H., Mitas L., “Interpolation by regularized splines with tension: I. Theory and implementation”, Mathematical Geology, 25:6 (1993), 641–655 | DOI
[32] Rozhenko A. I., Shaidorov T. S., “On spline approximation with a reproducing kernel method”, Num. Anal. and Appl., 6:4 (2013), 314–323 | DOI | MR | Zbl
[33] Rozhenko A. I., “O novom semeistve uslovno polozhitelno opredelennykh radialnykh bazisnykh funktsii”, Tr. IMM UrO RAN, 19, no. 2, 2013, 256–266 | MR
[34] Rozhenko A. I., “On new families of radial basis functions”, Constructive Theory of Functions, eds. K. Ivanov, G. Nikolov, R. Uluchev, Marin Drinov Academic Publishing House, 2014, 217–233 http://www.math.bas.bg/mathmod/Proceedings_CTF/CTF-2013/files_CTF-2013/17-Rozhenko.pdf
[35] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972 | MR
[36] Mataern B., Spatial Variation, Lect. Notes Stat., 36, 2nd ed., Springer, Berlin, 1986 | DOI | MR
[37] Duchon J., “Spline minimizing rotation-invariant seminorms in Sobolev spaces”, Constructive Theory of Functions of Several Variables, Lect. Notes Math., 571, Springer, Berlin, 1977, 85–100 | DOI | MR
[38] Principal Component Analysis, https://en.wikipedia.org/wiki/Principal_component_analysis