Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 225-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the sea thermodynamics, developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences is considered. The problem of variational assimilation of daily-averaged sea surface temperature (SST) data is formulated and investigated taking into account the observation error covariance matrices. On the basis of variational assimilation of satellite observation data, the inverse problem of restoring a heat flux on the sea surface is solved. The stability of the optimal solution of the problem of variational data assimilation is studied, and the results of numerical experiments for the model of the Baltic Sea dynamics are presented.
@article{SJVM_2018_21_2_a7,
     author = {V. P. Shutyaev and E. I. Parmuzin},
     title = {Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {225--242},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a7/}
}
TY  - JOUR
AU  - V. P. Shutyaev
AU  - E. I. Parmuzin
TI  - Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 225
EP  - 242
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a7/
LA  - ru
ID  - SJVM_2018_21_2_a7
ER  - 
%0 Journal Article
%A V. P. Shutyaev
%A E. I. Parmuzin
%T Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 225-242
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a7/
%G ru
%F SJVM_2018_21_2_a7
V. P. Shutyaev; E. I. Parmuzin. Stability of the optimal solution to the problem of variational assimilation with error covariance matrices of observational data for the sea thermodynamics model. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 225-242. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a7/

[1] Marchuk G. I., Adjoint Equations and Analysis of Complex Systems, Kluwer, Dordrecht, 1995 | MR | Zbl

[2] Lions J. L., Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968 | MR

[3] Sasaki Y. K., “An objective analysis based on the variational method”, J. Meteor. Soc. Japan., 36 (1958), 77–88 | DOI

[4] Penenko V. V., Obraztsov N. N., “Variatsionnyi metod soglasovaniya polei meteorologicheskikh elementov”, Meteorologiya i gidrologiya, 1976, no. 11, 1–11

[5] Le Dimet F.-X., Talagrand O., “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus A: Dynamic Meteorology and Oceanography, 38:2 (1986), 97–110 | DOI

[6] Agoshkov V. I., Metody optimalnogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003 | MR

[7] Mogensen K., Balmaseda M. A., Weaver A. T., Marti M., Vidard A., “NEMOVAR: a variational data assimilation system for the NEMO ocean model”, ECMWF Newsletter, 120 (2009), 17–22

[8] Zalesny V. B., Gusev A. V., Ivchenko V. O., Tamsalu R., Aps R., “Numerical model of the Baltic Sea circulation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 85–100 | DOI | MR | Zbl

[9] Marchuk G. I., “Splitting and alternative direction methods”, Handbook of Numerical Analysis, v. 1, eds. P. G. Ciarlet, J. L. Lions, 1990, 197–462 | MR | Zbl

[10] Zalesny V. B., Marchuk G. I., Agoshkov V. I., Bagno A. V., Gusev A. V., Diansky N. A., Moshonkin S. N., Tamsalu R., Volodin E. M., “Numerical simulation of large–scale ocean circulation based on multicomponent splitting method”, Russ. J. Numer. Anal. Math. Modelling, 25:6 (2010), 581–609 | DOI | MR | Zbl

[11] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P., “Numerical algorithm for variational assimilation of sea surface temperature data”, Comput. Math. Math. Phys., 48:8 (2008), 1293–1312 | DOI | MR | Zbl

[12] Agoshkov V. I., Parmuzin E. I., Zalesny V. B., Shutyaev V. P., Zakharova N. B., Gusev A. V., “Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics”, Russ. J. Numer. Anal. Math. Modelling, 30:4 (2015), 203–212 | DOI | MR | Zbl

[13] Le Dimet F.-X., Shutyaev V., “On deterministic error analysis in variational data assimilation”, Nonlinear Processes in Geophysics, 12 (2005), 481–490 | DOI

[14] Gejadze I., Le Dimet F.-X., Shutyaev V. P., “On analysis error covariances in variational data assimilation”, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR

[15] Gejadze I., Le Dimet F.-X., Shutyaev V. P. pOn optimal solution error covariances in variational data assimilation problems, J. Comp. Phys., 229 (2010), 2159–2178 | DOI | MR | Zbl

[16] Gejadze I., Shutyaev V. P., Le Dimet F.-X., “Analysis error covariance versus posterior covariance in variational data assimilation”, Quarterly J. of the Royal Meteorological Society, 139 (2013), 1826–1841 | DOI

[17] Parmuzin E. I., Shutyaev V. P., “The study of solution sensitivity for the variational observation data assimilation problem in the Black Sea dynamics model”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 37–52 | DOI | MR | Zbl

[18] Alekseev V. V., Zalesnyi V. B., “Chislennaya model krupnomasshtabnoi dinamiki okeana”, Vychislitelnye protsessy i sistemy, Nauka, M., 1993, 232–253

[19] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR

[20] Agoshkov V. I., Gusev A. V., Diansky N. A., Oleinikov R. V., “An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 1–10 | MR

[21] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometeoizdat, L., 1981 | MR

[22] Shutyaev V. P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh, Nauka, M., 2001 | MR

[23] Roll G. U., Fizika atmosfernykh protsessov nad morem, Gidrometeoizdat, L., 1968

[24] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[25] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P., “Observational data assimilation in the problem of black sea circulation and sensitivity analysis of its solution”, Izvestiya, Atmospheric and Ocean Physics, 49:6 (2013), 592–602 | DOI | DOI

[26] Zakharova N. B., Lebedev S. A., “Interpolyatsiya operativnykh dannykh buev ARGO dlya assimilyatsii dannykh v modeli tsirkulyatsii Mirovogo okeana”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 7:4 (2010), 104–111

[27] Zakharova N. B., Agoshkov V. I., Parmuzin E. I., “The new method of ARGO buoys system observation data interpolation”, Russ. J. Numer. Anal. Math. Modelling, 28:1 (2013), 67–84 | DOI | MR | Zbl