Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 215-223
Voir la notice de l'article provenant de la source Math-Net.Ru
The study of Painlevé's equations has increased during the last years, due to the awareness that these equations and their solutions can accomplish good results both in the field of pure mathematics and theoretical physics. In this paper we introduced an optimal homotopy asymptotic method (OHAM) approach to propose analytic approximate solutions to the second Painlevé equation. The advantage of this method is that it provides a simple algebraic expression that can be used for further developments while maintaining good performance and fitting closely the numerical solution.
@article{SJVM_2018_21_2_a6,
author = {D. Sierra-Porta},
title = {Some algebraic approach for the second {Painlev\'e} equation using the optimal homotopy asymptotic method {(OHAM)}},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {215--223},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/}
}
TY - JOUR AU - D. Sierra-Porta TI - Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM) JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 215 EP - 223 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/ LA - ru ID - SJVM_2018_21_2_a6 ER -
%0 Journal Article %A D. Sierra-Porta %T Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM) %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 215-223 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/ %G ru %F SJVM_2018_21_2_a6
D. Sierra-Porta. Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 215-223. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/