Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_2_a6, author = {D. Sierra-Porta}, title = {Some algebraic approach for the second {Painlev\'e} equation using the optimal homotopy asymptotic method {(OHAM)}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {215--223}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/} }
TY - JOUR AU - D. Sierra-Porta TI - Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM) JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 215 EP - 223 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/ LA - ru ID - SJVM_2018_21_2_a6 ER -
%0 Journal Article %A D. Sierra-Porta %T Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM) %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 215-223 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/ %G ru %F SJVM_2018_21_2_a6
D. Sierra-Porta. Some algebraic approach for the second Painlev\'e equation using the optimal homotopy asymptotic method (OHAM). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 215-223. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a6/
[2] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta mathematica, 25:1 (1902), 1–85 | DOI | MR
[3] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of P-type. I”, J. of Mathematical Physics, 21:4 (1980), 715–721 | DOI | MR | Zbl
[4] Kudryashov N. A., Analytical Theory of Nonlinear Differential Equations, 2 ed., Institute of Computer Investigations, Moscow–Izhevsk, 2004
[5] Lukashevich N. A., Gromak V. I., Analytical Properties of Solutions to Painlevé equations, University Publishing House, Moscow–Minsk, 1990 | MR
[6] Golubev V. V., Lectures on Analytical Theory of Differential Equations, GITTL (State Publishing House of Technical-Theoretical Literature), Moscow–Leningrad, 1941 | MR
[7] Conte R., “The Painlevé Approach to Nonlinear Ordinary Differential Equations”, The Painlevé property. One Century Later, Springer-Verlag, 1999, 77–180 | DOI | MR
[8] Miles J. W., “On the second Painlevé transcendent”, Proc. of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361 (1978), 277–291 | DOI | MR | Zbl
[9] Rosales R. R., “The similarity solution for the Korteweg–de Vries equation and the related Painlevé transcendent”, Proc. of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361 (1978), 265–275 | DOI | MR | Zbl
[10] Tracy C. A., Widom H., “Painlevé functions in statistical physics”, Publications of the Research Institute for Mathematical Sciences, 47:1 (2011), 361–374 | DOI | MR | Zbl
[11] Kashevarov A. V., “The second Painlevé equation in the electrostatic-probe theory: Numerical solutions”, Computational mathematics and mathematical physics, 38:6 (1998), 950–958 | MR | Zbl
[12] Kashevarov A. V., “The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface”, Technical Physics, 49:1 (2004), 1–7 | DOI
[13] Rajeev S. G., “Exact solution of the Landau–Lifshitz equations for a radiating charged particle in the coulomb potential”, Annals of Physics, 323:11 (2008), 2654–2661 | DOI | MR | Zbl
[14] Lukashevich N. A., “On the theory of the second Painlevé equation”, Differential Equations, 7:6 (1971), 1124–1125 | MR | Zbl
[15] Clarkson P. A., “Painlevé Transcendents”, NIST Handbook of Mathematical Functions, Chapter 32, eds. Ronald F. Boisvert, Charles W. Clark, Frank W. J. Olver, Daniel W. Lozier, Cambridge University Press, National Institute of Standards and Technology, Cambridge, 2010, 723–740 | MR
[16] Thompson I., “Nist handbook of mathematical functions, edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark”, Contemporary Physics, 52:5 (2011), 497–498 | DOI | MR
[17] Davis H. T., Introduction to Nonlinear Differential and Integral Equations, Courier Corporation, 1962 | MR
[18] Dehghan Mehdi, Shakeri Fatemeh, “The numerical solution of the second Painlevé equation”, Numerical Methods for Partial Differential Equations, 25:5 (2009), 1238–1259 | DOI | MR | Zbl
[19] Ellahi R., Abbasbandy S., Hayat Tasawar, Zeeshan A., “On comparison of series and numerical solutions for second Painlevé equation”, Numerical Methods for Partial Differential Equations, 26:5 (2010), 1070–1078 | MR | Zbl
[20] Saadatmandi A., “Numerical study of second Painlevé equation”, Communications in Numerical Analysis, 2012 (2012), Article ID cna-00157, 16 pp. | DOI | MR
[21] Marinca V., Herişanu N., Bota C., Marinca B., “An optimal homotope asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate”, Applied Mathematics Letters, 22:2 (2009), 245–251 | DOI | MR | Zbl
[22] Marinca V., Herişanu N., Nemeş I., “Optimal homotope asymptotic method with application to thin film flow”, Open Physics, 6:3 (2008), 648–653 | DOI
[23] Marinca V., Herişanu N., “Application of optimal homotope asymptotic method for solving nonlinear equations arising in heat transfer”, Int. Communications in Heat and Mass Transfer, 35:6 (2008), 710–715 | DOI
[24] Marinca V., Herisanu N., Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches, Springer Science Business Media, 2012 | MR
[25] Ghoreishi M., Ismail A. I. B., Alomari A. K., “Comparison between homotope analysis method and optimal homotope asymptotic method for $n$th-order integro-differential equation”, Mathematical Methods in the Applied Sciences, 34:15 (2011), 1833–1842 | DOI | MR | Zbl
[26] Sierra-Porta D., Núñez L. A., “On the polynomial solution of the first Painlevé equation”, Int. J. of Applied Mathematical Research, 6:1 (2017), 34–38 | DOI