Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_2_a3, author = {R. Darzi and B. Agheli}, title = {Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {171--183}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a3/} }
TY - JOUR AU - R. Darzi AU - B. Agheli TI - Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 171 EP - 183 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a3/ LA - ru ID - SJVM_2018_21_2_a3 ER -
%0 Journal Article %A R. Darzi %A B. Agheli %T Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 171-183 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a3/ %G ru %F SJVM_2018_21_2_a3
R. Darzi; B. Agheli. Analytical approach to solution fractional partial differential equation by optimal q-homotopy analysis method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 171-183. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a3/
[1] Liao S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[2] El-Tawil M. A., Huseen S. N., “The q-homotopy analysis method (q-HAM)”, Int. J. Appl. Math. and Mechanics, 8:15 (2012), 51–75
[3] Huseen S. N., Grace S. R., El-Tawil M. A., “The optimal q-homotopy analysis method (Oq-HAM)”, Int. J. Comp. Technology, 11:8 (2012), 2859–2866 | DOI
[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier BV, Netherlands, 2006 | MR | Zbl
[5] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993 | MR | Zbl
[6] Momani S., Shawagfeh N., “Decomposition method for solving fractional Riccati differential equations”, Appl. Math. Comput., 182 (2006), 1083–1092 | MR | Zbl
[7] Wang Q., “Numerical solutions for fractional KdV–Burgers equation by Adomian decomposition method”, Appl. Math. Comput., 182 (2006), 1048–1055 | MR | Zbl
[8] Inc M., “The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method”, J. Math. Anal. Appl., 345 (2008), 476–484 | DOI | MR | Zbl
[9] Yang X. J., Baleanu D., Khan Y., Mohyud-Din S. T., “Local fractional variational iteration method for diffusion and wave equations on Cantor sets”, Rom. J. Phys., 59 (2014), 36–48 | MR
[10] Momani S., Odibat Z., “Homotopy perturbation method for nonlinear partial differential equations of fractional order”, Phys. Lett. A, 365 (2007), 345–350 | DOI | MR | Zbl
[11] Odibat Z., Momani S., “Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order”, Chaos Soliton. Fract., 36 (2008), 167–174 | DOI | MR | Zbl
[12] Hosseinnia S., Ranjbar A., Momani S., “Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part”, Comput. Math. Appl., 56 (2008), 3138–3149 | DOI | MR | Zbl
[13] Hashim I., Abdulaziz O., Momani S., “Homotopy analysis method for fractional IVPs”, Commun. Nonlinear Sci., 14 (2009), 674–684 | DOI | MR | Zbl
[14] Zurigat M., Momani S., Alawneh A., “Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method”, Comput. Math. Appl., 59 (2010), 1227–1235 | DOI | MR | Zbl
[15] Kumar P., Agrawal O. P., “An approximate method for numerical solution of fractional differential equations”, Sign. Proc., 86 (2006), 2602–2610 | DOI | Zbl
[16] Yang X. J., Baleanu D., Zhong W. P., “Approximation solutions for diffusion equation on Cantor space-time”, Proc. Romanian Academy. Series A, 14 (2013), 127–133 | MR
[17] Yuste S. B., “Weighted average finite difference methods for fractional diffusion equations”, J. Comput. Phys., 216 (2006), 264–274 | DOI | MR | Zbl
[18] Yabushita K., Yamashita M., Tsuboi K., “An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method”, J. Phys. A: Math. and Theor., 40:29 (2007), 8403–8416 | DOI | MR | Zbl
[19] El-Tawil M. A., Huseen S. N., “On convergence of the q-homotopy analysis method”, Int. J. Contemporary Mathematical Sciences, 8:10 (2013), 481–497 | DOI | MR
[20] Neamaty A., Agheli B., Darzi R., “Variational iteration method and he's polynomials for time-fractional partial differential equations”, Progr. Fract. Differ. Appl., 1:1 (2015), 47–55 | MR