Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_2_a2, author = {A. V. Grigorev and Yu. M. Laevsky and P. G. Yakovlev}, title = {On the double porosity model of fractured-porous reservoirs based on the hybrid overflow function}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {155--169}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a2/} }
TY - JOUR AU - A. V. Grigorev AU - Yu. M. Laevsky AU - P. G. Yakovlev TI - On the double porosity model of fractured-porous reservoirs based on the hybrid overflow function JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 155 EP - 169 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a2/ LA - ru ID - SJVM_2018_21_2_a2 ER -
%0 Journal Article %A A. V. Grigorev %A Yu. M. Laevsky %A P. G. Yakovlev %T On the double porosity model of fractured-porous reservoirs based on the hybrid overflow function %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 155-169 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a2/ %G ru %F SJVM_2018_21_2_a2
A. V. Grigorev; Yu. M. Laevsky; P. G. Yakovlev. On the double porosity model of fractured-porous reservoirs based on the hybrid overflow function. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 155-169. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a2/
[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Prikl. matematika i mekhanika, 24:5 (1960), 852–864 | Zbl
[2] Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Society of Petroleum Engineers Journal, 3:3 (1963), 245–255 | DOI
[3] Dmitriev N. M., Maksimov V. M., “Models of flow through fractured-porous anisotropic media”, Fluid Dynamics, 42:6 (2007), 937–942 | DOI | MR | Zbl
[4] Vabishchevich P. N., Grigoriev A. V., “Numerical modeling of fluid flow in anisotropic fractured porous media”, Numerical Analysis and Applications, 9:1 (2016), 45–56 | DOI | MR | Zbl
[5] Landau L. D., Lifshits E. M., Teoriya uprugosti. Kurs Teoreticheskoi Fiziki, v. VII, 4-e izd., ispr., Nauka, M., 1987
[6] Pruess K., Brief guide to the MINC-method for modeling flow and transport in fractured media, Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, 1992
[7] Brenner S. C., Scott L. R., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, 3rd ed., Springer, 2007 | MR
[8] Dupont T., Hoffman J., Johnson C. et all, The FEniCS project, Tech. Rep. 2003-21, Preprint, Chalmers Finite Element Center, Chalmers University of Technology, Goteborg, 2003
[9] Langtangen H. P., Logg A., Solving PDEs in Minutes, The FEniCS Tutorial, 1, Springer, 2016 | MR
[10] Geuzaine C., Remacle J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities”, Int. J. for Numerical Methods in Engineering, 79:11 (2009), 1309–1331 | DOI | MR | Zbl
[11] SPE Comparative Solution Project, http://www.spe.org/web/csp/datasets/set02.htm
[12] Karypis G., Kumar V., “A parallel algorithm for multilevel graph partitioning and sparse matrix ordering”, J. of Parallel and Distributed Computing, 48:1 (1998), 71–95 | DOI | MR