The cluster algorithms for solving problems with asymmetric proximity measures
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 127-138

Voir la notice de l'article provenant de la source Math-Net.Ru

The cluster analysis is used in various fundamental and applied fields and is a current topic of research. Unlike conventional methods, the proposed algorithms are used for clustering objects represented by vectors in space with the non-observance of the axiom of symmetry. In this case, the feature of solving the clustering problem is the use of an asymmetric proximity measures. The first one among the proposed clustering algorithms sequentially forms clusters with a simultaneous generalization to clustered objects from previously created clusters to a current cluster if this reduces the quality criterion. This approach to the formation of clusters allows reducing the computational costs as compared with existing non-hierarchical cluster algorithms. The second algorithm is a modified version of the first algorithm. The second algorithm allows reassigning the main objects of clusters to further reduce the proposed quality criterion.
@article{SJVM_2018_21_2_a0,
     author = {A. R. Aydinyan and O. L. Tsvetkova},
     title = {The cluster algorithms for solving problems with asymmetric proximity measures},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/}
}
TY  - JOUR
AU  - A. R. Aydinyan
AU  - O. L. Tsvetkova
TI  - The cluster algorithms for solving problems with asymmetric proximity measures
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 127
EP  - 138
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/
LA  - ru
ID  - SJVM_2018_21_2_a0
ER  - 
%0 Journal Article
%A A. R. Aydinyan
%A O. L. Tsvetkova
%T The cluster algorithms for solving problems with asymmetric proximity measures
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 127-138
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/
%G ru
%F SJVM_2018_21_2_a0
A. R. Aydinyan; O. L. Tsvetkova. The cluster algorithms for solving problems with asymmetric proximity measures. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 127-138. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/