Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_2_a0, author = {A. R. Aydinyan and O. L. Tsvetkova}, title = {The cluster algorithms for solving problems with asymmetric proximity measures}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {127--138}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/} }
TY - JOUR AU - A. R. Aydinyan AU - O. L. Tsvetkova TI - The cluster algorithms for solving problems with asymmetric proximity measures JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 127 EP - 138 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/ LA - ru ID - SJVM_2018_21_2_a0 ER -
%0 Journal Article %A A. R. Aydinyan %A O. L. Tsvetkova %T The cluster algorithms for solving problems with asymmetric proximity measures %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 127-138 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/ %G ru %F SJVM_2018_21_2_a0
A. R. Aydinyan; O. L. Tsvetkova. The cluster algorithms for solving problems with asymmetric proximity measures. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 2, pp. 127-138. http://geodesic.mathdoc.fr/item/SJVM_2018_21_2_a0/
[1] Tryon R. C., Cluster analysis, Ann Arbor Edwards Bros, London, 1939
[2] Madhulatha T. S., “An overview on clustering methods”, IOSR J. of Engineering, 2:4 (2012), 719–725 | DOI
[3] Hartigan J. A., Clustering Algorithms, Probability Mathematical Statistics, John Wiley Sons Inc, New York–London–Sydney–Toronto, 1975 | MR | Zbl
[4] Sörensen T., “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content”, Kongelige Danske Videnskabernes Selskab. Biol. Skrifter., 5:4 (1948), 1–34
[5] Safari K. M., Tive M., Babania A., Hesan M., “Analyzing the applications of customer lifetime value (CLV) based on benefit segmentation for the banking sector”, Procedia – Social and Behavioral Sciences, 109, 2nd World Conference on Business, Economics and Management (2014), 590–594 | DOI
[6] Srihadi D. T. F., Hartoyo, Sukandar D., Soehadi A. W., “Segmentation of the tourism market for Jakarta: Classification of foreign visitors' lifestyle typologies”, Tourism Management Perspectives, 19:1 (2016), 32–39 | DOI
[7] Beh A., Bruyere B. L., “Segmentation by visitor motivation in three Kenyan national reserves”, Tourism Management, 28 (2007), 1464–1471 | DOI
[8] Kel'manov A. V., Khamidullin S. A., “An approximation polynomial-time algorithm for a sequence BI-clustering problem”, Computational Mathematics and Mathematical Physics, 55:6 (2015), 1068–1076 | DOI | DOI | MR | Zbl
[9] Kelmanov A. V., Romanchenko S. M., Khamidullin S. A., “Tochnye psevdopolinomialnye algoritmy dlya nekotorykh trudnoreshaemykh zadach poiska podposledovatelnosti vektorov”, Zhurn. vychisl. matem. i mat. fiziki, 53:1 (2013), 143–153 | DOI | Zbl
[10] Kel'manov A. V., Jeon B. A., “Posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. on Signal Proc., 52:3 (2004), 645–656 | DOI | MR | Zbl
[11] Aidinyan A. R., Tsvetkova O. L., “Geneticheskie algoritmy raspredeleniya rabot”, Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta, 11:5(56) (2011), 723–729
[12] Shalymov D. S., “Algoritmy ustoichivoi klasterizatsii na osnove indeksnykh funktsii i funktsii ustoichivosti”, Stokhasticheskaya optimizatsiya v informatike (SPb.), 2008, no. 4, 236–248
[13] Jain A. K., Murty M. N., Flynn P. J., “Data clustering: a review”, ACM Computing Surveys, 31:3 (1999), 264–323 | DOI
[14] Soni N., Ganatra A., “Categorization of several clustering algorithms from different perspective: a review”, Int. J. of Advanced Research in Computer Science and Software Engineering, 2:8 (2012), 63–68
[15] Mao J., Jain A. K., “A self-organizing network for hyperellipsoidal clustering (HEC”, IEEE Trans. Neural Netw., 7 (1996), 16–29 | DOI
[16] Huttenlocher D. P., Klanderman G. A., Rucklidge W. J., “Comparing images using the Hausdorff distance”, IEEE Trans. Pattern Anal. Mach. Intell., 15:9 (1993), 850–863 | DOI
[17] Dubuisson M. P., Jain A. K., “A modified Hausdorff distance for objec matching”, Proc. of the International Conference on Pattern Recognition (ICPR'94), 1994, 566–568 | DOI
[18] Van der Lann M. J., Pollard K. S., Bryan J., “A new partitioning around medoids algorithm”, J. of Statistical Computation and Simulation, 5:8 (2003), 575–584 | MR