To the numerical solution of one class of systems of the Volterra polynomial equations of the first kind
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 117-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a class of second order systems of the Volterra nonlinear integral equations. This class is related to the automatic control problem of a dynamic object with vector inputs and outputs. A numerical solution technique based on the Newton–Kantorovich method is considered. To verify the efficiency of the algorithms developed, a series of test calculations were carried out.
@article{SJVM_2018_21_1_a7,
     author = {S. V. Solodusha},
     title = {To the numerical solution of one class of systems of the {Volterra} polynomial equations of the first kind},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a7/}
}
TY  - JOUR
AU  - S. V. Solodusha
TI  - To the numerical solution of one class of systems of the Volterra polynomial equations of the first kind
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 117
EP  - 126
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a7/
LA  - ru
ID  - SJVM_2018_21_1_a7
ER  - 
%0 Journal Article
%A S. V. Solodusha
%T To the numerical solution of one class of systems of the Volterra polynomial equations of the first kind
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 117-126
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a7/
%G ru
%F SJVM_2018_21_1_a7
S. V. Solodusha. To the numerical solution of one class of systems of the Volterra polynomial equations of the first kind. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 117-126. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a7/

[1] Giannakins G. B., Serpedin E., “A bibliography on nonlinear system identification”, Signal Processing, 81 (2001), 533–580 | DOI

[2] Tsibizova T. Yu., “Metody identifikatsii nelineinykh sistem upravleniya”, Sovremennye problemy nauki i obrazovaniya, 2015, no. 1, chast 1, 109–116 https://www.science-education.ru/ru/article/view?id=17910

[3] Volkov N. V., Funktsionalnye ryady v zadachakh dinamiki avtomatizirovannykh sistem, Yanus-K., M., 2001

[4] Volterra V., A Theory of Functionals, Integral and Integro-Differential Equations, Dover Publ., New York, 1959 | MR

[5] Brunner H., Volterra Integral Equations: an Introduction to Theory and Applications, Cambridge University Press, Cambridge, 2017 | MR

[6] Apartsin A. S., “Studying the polynomial volterra equation of the first kind for solution stability”, Automation and Remote Control, 72:6 (2011), 1229–1236 | DOI | MR | Zbl

[7] Apartsin A. S., “Polilineinye integralnye uravneniya Volterra I roda: elementy teorii i chislennye metody”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Matematika, 2007, no. 1, 13–41

[8] Apartsin A. S., “On the convergence of numerical methods for solving a Volterra bilinear equations of the first kind”, Computational Mathematics and Mathematical Physics, 47:8 (2007), 1323–1331 | DOI | MR

[9] Apartsyn A. S., “Multilinear Volterra equations of the first kind”, Automation and Remote Control, 65:2 (2004), 263–269 | DOI | MR | Zbl

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatlit, M., 1959 | MR

[11] Solodusha S. V., “A class of systems of bilinear integral Volterra equations of the first kind of the second order”, Automation and Remote Control, 70:4 (2009), 663–671 | DOI | MR | Zbl

[12] Beltyukov B. A., “K resheniyu nelineinykh integralnykh uravnenii metodom Nyutona”, Differentsialnye uravneniya, 2:8 (1966), 1072–1083 | MR | Zbl

[13] Boikov I. V., Tynda A. N., “Approximate solution of nonlinear integral equations of the theory of developing systems”, Differential Equations, 39:9 (2003), 1277–1288 | DOI | MR

[14] Tairov E. A., “Nelineinoe modelirovanie dinamiki teploobmena v kanale s odnofaznym teplonositelem”, Izvestiya AN SSSR. Energetika i transport, 1989, no. 1, 150–156