The properties of difference schemes on oblique stencils for the hyperbolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study various difference schemes on oblique stencils, i.e., the schemes using different space grids on different time levels. Such schemes can be useful when solving boundary value problems with moving boundaries and when using the regular grids of a non-standard structure (for example, triangular or cellular) and, also, when applying the adaptive methods. To study the stability, we use the analysis of First Differential Approximation of finite difference schemes and the dispersion analysis. We study the meaning of the stability conditions as constraints on the geometric location of stencil elements with respect to the characteristics of the equation. In addition, we compare our results with the geometric interpretation of the stability of classical schemes. The paper also presents the generalization of oblique schemes in the case of the quasi-linear equation of transport and numerical experiments for these schemes.
@article{SJVM_2018_21_1_a5,
     author = {V. I. Paasonen},
     title = {The properties of difference schemes on oblique stencils for the hyperbolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a5/}
}
TY  - JOUR
AU  - V. I. Paasonen
TI  - The properties of difference schemes on oblique stencils for the hyperbolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 83
EP  - 97
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a5/
LA  - ru
ID  - SJVM_2018_21_1_a5
ER  - 
%0 Journal Article
%A V. I. Paasonen
%T The properties of difference schemes on oblique stencils for the hyperbolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 83-97
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a5/
%G ru
%F SJVM_2018_21_1_a5
V. I. Paasonen. The properties of difference schemes on oblique stencils for the hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 83-97. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a5/

[1] Thompson J. F., “Grid generation techniques in computational fluid dynamics”, AIAA Journal, 22:11 (1984), 1505–1523 | DOI

[2] Rai M. M., Anderson D. A., “Application of adaptive grids to fluid-flow problems with asymptotic solutions”, AIAA Journal, 20:4 (1982), 496–502 | DOI

[3] Dwyer H. A., “Grid adaptive for problem in fluid dynamics”, AIAA Journal, 22:12 (1984), 1705–1712 | DOI

[4] Liseikin V. D., “Obzor metodov postroeniya strukturirovannykh adaptivnykh setok”, Zhurn. vychisl. matem. i mat. fiziki, 36:1 (1996), 3–41 | MR | Zbl

[5] Khakimzyanov G. S., Shokina N. Yu., “Metod ekviraspredeleniya dlya postroeniya adaptivnykh setok”, Vychisl. tekhnologii, 3:6 (1998), 63–81 | MR

[6] Paasonen V. I., “Kompaktnye skhemy tretego poryadka tochnosti na neravnomernykh adaptivnykh setkakh”, Vychisl. tekhnologii, 20:2 (2015), 56–64

[7] Paasonen V. I., “The compact schemes for system of second-order equations without mixed derivatives”, Russ. J. Numer. Anal. Math. Modeling, 13:4 (1998), 335–344 | MR

[8] Shokin Yu. I., “O metode pervogo differentsialnogo priblizheniya v teorii raznostnykh skhem dlya giperbolicheskikh sistem uravnenii”, Tr. MIAN SSSR, 122, 1973, 66–84 | MR | Zbl

[9] Paasonen V. I., “Dissipativnye neyavnye skhemy s psevdovyazkostyu vysshikh poryadkov dlya giperbolicheskikh sistem uravnenii”, Chisl. metody mekh. splosh. sredy (Novosibirsk), 4:4 (1973), 44–57