Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2018_21_1_a4, author = {R. K. Mohanty and D. Kaur}, title = {Compact difference scheme with high accuracy for one dimensional unsteady quasi-linear biharmonic problem of second kind: {Application} to physical problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {65--82}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a4/} }
TY - JOUR AU - R. K. Mohanty AU - D. Kaur TI - Compact difference scheme with high accuracy for one dimensional unsteady quasi-linear biharmonic problem of second kind: Application to physical problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2018 SP - 65 EP - 82 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a4/ LA - ru ID - SJVM_2018_21_1_a4 ER -
%0 Journal Article %A R. K. Mohanty %A D. Kaur %T Compact difference scheme with high accuracy for one dimensional unsteady quasi-linear biharmonic problem of second kind: Application to physical problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2018 %P 65-82 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a4/ %G ru %F SJVM_2018_21_1_a4
R. K. Mohanty; D. Kaur. Compact difference scheme with high accuracy for one dimensional unsteady quasi-linear biharmonic problem of second kind: Application to physical problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 65-82. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a4/
[1] Akrivis G., Smyrlis Y.-S., “Implicit-explicit BDF methods for the Kuramoto–Sivashinsky equation”, Appl. Numer. Math., 51 (2004), 151–169 | DOI | MR
[2] Aronson D. G., Weinberger H. F., “Multidimensional nonlinear diffusion arising in population genetics”, Adv. Math., 30 (1978), 33–76 | DOI | MR
[3] Danumjaya P., Pani A. K., Finite element methods for the extended Fisher–Kolmogorov (EFK) equation, Research Report: IMG-RR-2002-3, Industrial Mathematics Group, Department of Mathematics, IIT, Bombay, 2002 | MR
[4] Danumjaya P., Pani A. K., “Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation”, J. Comput. Appl. Math., 174 (2005), 101–117 | DOI | MR
[5] Dee G. T., van Saarloos W., “Bistable systems with propagating fronts leading to pattern formation”, Phys. Rev. Lett., 60 (1988), 2641–2644 | DOI
[6] Doss L. J. T., Nandini A. P., “An $H^1$-Galerkin mixed finite element method for the extended Fisher–Kolmogorov equation”, Int. J. Numer. Anal. Model. Ser. B, 3 (2012), 460–485 | MR
[7] Fan E., “Extended tanh-function method and its applications to nonlinear equations”, Phys. Lett. A, 277 (2000), 212–218 | DOI | MR
[8] Ganaie I. A., Arora S., Kukreja V. K., “Cubic Hermite collocation solution of Kuramoto–Sivashinsky equation”, Int. J. Comput. Math., 93 (2016), 223–235 | DOI | MR
[9] Hageman L. A., Young D. M., Applied Iterative Methods, Dover Publication, New York, 2004 | MR
[10] Haq Sirajul, Bibi Nagina, Tirmizi S. I. A., Usman M., “Meshless method of lines for the numerical solution of generalized Kuramoto–Sivashinsky equation”, Appl. Math. Comput., 217 (2010), 2404–2413 | MR
[11] Hooper A. P., Grimshaw R., “Nonlinear instability at the interface between two viscous fluids”, Phys. Fluids, 28 (1985), 37–45 | DOI
[12] Kelley C. T., Iterative Methods for Linear and Non-linear Equations, SIAM Publications, Philadelphia, 1995 | MR
[13] Khater A. H., Temsah R. S., “Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods”, Comput. Math. Appl., 56 (2008), 1465–1472 | DOI | MR
[14] Kuramoto Y., Tsuzuki T., “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Prog. Theor. Phys., 55 (1976), 356–569 | DOI
[15] Lai Huilin, Ma Changfeng, “Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation”, Phys. A, 388 (2009), 1405–1412 | DOI | MR
[16] Mitchell A. R., Computational Methods in Partial Differential Equations, John Wiley Sons, New York, 1969 | MR
[17] Mittal R. C., Arora G., “Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation”, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2798–2808 | DOI | MR
[18] Mohanty R. K., “An accurate three spatial grid-point discretization of $O(k^2+h^4)$ for the numerical solution of one-space dimensional unsteady quasi-linear biharmonic problem of second kind”, Appl. Math. Comput., 140 (2003), 1–14 | MR
[19] Mohanty R. K., Kaur Deepti, “High accuracy implicit variable mesh methods for numerical study of special types of fourth order non-linear parabolic equations”, Appl. Math. Comput., 273 (2016), 678–696 | MR
[20] Mohanty R. K., Kaur Deepti, “A class of quasi-variable mesh methods based on off-step discretization for the numerical solution of fourth-order quasi-linear parabolic partial differential equations”, Adv. Difference Equ., 2016, Paper No. 326, 29 pp. | DOI | MR
[21] Mohanty R. K., Kaur Deepti, “Numerov type variable mesh approximations for 1D unsteady quasi-linear biharmonic problem: application to Kuramoto–Sivashinsky equation”, Numer. Algor., 74 (2017), 427–459 | DOI | MR
[22] Mohanty R. K., McKee Sean, Kaur Deepti, “A class of two-level implicit unconditionally stable methods for a fourth order parabolic equation”, Appl. Math. Comput., 309 (2017), 272–280 | MR
[23] Saprykin S., Demekhin E. A., Kalliadasis S., “Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses”, Phys. Fluids, 17:11 (2005), 117105, 16 pp. | DOI | MR
[24] Sivashinsky G., “Nonlinear analysis of hydrodynamic instability in laminar flames. Part I. Derivation of basic equations”, Acta Astronaut., 4 (1977), 1117–1206 | DOI | MR
[25] Stephenson J. W., “Single cell discretizations of order two and four for biharmonic problems”, J. Comput. Phys., 55 (1984), 65–80 | DOI | MR
[26] Tatsumi T., “Irregularity, regularity and singularity of turbulence”, Turbulence and chaotic phenomena in fluids, Proc. Inter. Symposium (Kyoto, Japan, 1983), North-Holland, 1984, 1–10 | MR
[27] Uddin Marjan, Haq Sirajul, Siraj-ul-Islam, “A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations”, Appl. Math. Comput., 212 (2009), 458–469 | MR
[28] Yan Xu, Shu Chi-Wang, “Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations”, Comput. Methods Appl. Mech. Eng., 195 (2006), 3430–3447 | DOI | MR
[29] Ye Lina, Yan Guangwu, Li Tingting, “Numerical method based on the lattice Boltzmann model for the Kuramoto–Sivashisky equation”, J. Sci. Comput., 49 (2011), 195–210 | DOI | MR
[30] Zimmermann W., “Propagating fronts near a Lifshitz point”, Phys. Rev. Lett., 66 (1991), 1546 | DOI