A discrete stochastic model of water permeation through a~porous substance: parallel implementation peculiarities
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The parallel implementation peculiarities of a discrete stochastic model that simulates water permeation through a porous substance (soil) with a complex morphology are studied. The simulation should reveal the fluid flowing along pore curves and filling wets and cavities. The discrete stochastic model of the process, proposed earlier, is a stochastic cellular automaton (SCA), whose functioning is represented by a set of elementary local operators acting in a cellular space and imitating displacement (diffusion. convection, adsorption) and transformations (reaction, phase transition) of abstract or real particles. The microlevel of the process representation requires the cellular space of a huge size, and hence, the computations should be implemented on supercomputers. With this, the main problem is in the fact that obtaining an acceptable parallelization efficiency is possible only by inserting some determinism into the computation algorithm, i.e., by decreasing the model stochasticity. Although stochastic models are under intensive investigation, the parallel implementation methods for them are poorly studied. This gap is partially covered by the results of computational experiments, given in this paper, which allow one to assess the advantages and drawbacks of methods for the discrete stochastic mode of water permeation though implementing a porous medium on a multicore cluster.
@article{SJVM_2018_21_1_a0,
     author = {O. L. Bandman},
     title = {A discrete stochastic model of water permeation through a~porous substance: parallel implementation peculiarities},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a0/}
}
TY  - JOUR
AU  - O. L. Bandman
TI  - A discrete stochastic model of water permeation through a~porous substance: parallel implementation peculiarities
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2018
SP  - 5
EP  - 21
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a0/
LA  - ru
ID  - SJVM_2018_21_1_a0
ER  - 
%0 Journal Article
%A O. L. Bandman
%T A discrete stochastic model of water permeation through a~porous substance: parallel implementation peculiarities
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2018
%P 5-21
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a0/
%G ru
%F SJVM_2018_21_1_a0
O. L. Bandman. A discrete stochastic model of water permeation through a~porous substance: parallel implementation peculiarities. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 21 (2018) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/SJVM_2018_21_1_a0/

[1] Boccara N., Reaction-Difusion Complex Systems, Springer, Berlin, 2004 | MR

[2] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh. Eksperiment i teoriya, IKI, Izhevsk, 2008

[3] Adamatzky A., Reaction-Diffusion Automata: Phenomenology, Localisations, Computation, Springer, Heidelberg, 2013 | MR

[4] Ziff R. M., Gulari E., Barshad Y., “Kinetic phase transitions in an irreversible surface-reaction model”, Phys. Rev. Lett., 56:24 (1986), 2553–2556 | DOI

[5] Chatterjee A., Vlaches D. G., “An overview of spatial microscopic and accelerated kinetic Monte-Carlo methods”, J. Comp. Aided Matter Des., 14 (2007), 253–308 | DOI

[6] I. Prigogine, S. A. Rice (eds.), Monte Carlo methods in chemical physics, Advances in Chemical Physics, 105, Willey Sons Inc., 2009 | MR

[7] Matveev A. V., Latkin E. I., Elokhin V. I., Gorodetskii V. V., “Turbulent and stripes wave patterns caused by limited CO$_{ads}$ diffusion during CO oxidation over Pd(110) surface: kinetic Monte Carlo studies”, Chem. Eng. J., 107 (2005), 181–189 | DOI

[8] Elokhin V. I., Matveev A. V., Gorodetskii V. V., “Avtokolebaniya i khimicheskie volny v reaktsii okisleniya CO na Pt i Pd: kineticheskie modeli Monte-Karlo”, Kinetika i kataliz, 50:1 (2009), 45–53

[9] Vanag V. K., “Issledovanie prostranstvenno-raspredelennykh dinamicheskikh sistem metodami veroyatnostnogo kletochnogo avtomata”, Uspekhi fizicheskikh nauk, 169:5 (1999), 481–505 | DOI

[10] Alekseev D. V., Kazunina G. A., Cherednichenko A. V., “Kletochno-avtomatnoe modelirovanie protsessa razrusheniya khrupkikh materialov”, Prikladnaya diskretnaya matematika, 2015, no. 2(28), 103–117

[11] Nurminen L., Kuronen A., Kaski K., “Kinetic Monte Carlo simulation of nucleation on patterned substrates”, Phys. Rev. B, 63 (2000), 035407-1–035407-7 | DOI

[12] Vitvitsky A. A., “Cellular automata with a dynamic structure for simulate the growth of biological tissues”, Numerical Analysis and Applications, 7:4 (2014), 263–273 | DOI | MR

[13] Bandman O. L., “Kletochno-avtomatnye modeli estestvennykh protsessov i ikh realizatsiya na sovremennykh kompyuterakh”, Prikladnaya diskretnaya matematika, 2017, no. 35, 102–121

[14] Bandman O. L., Kireeva A. E., “Stochastic cellular automata simulation of oscillations and autowaves in reactiondiffusion systems”, Numerical Analysis and Applications, 8:3 (2015), 208–222 | DOI | DOI | MR

[15] Wolfram S., An Elementary Introduction to the Wolfram Language, Wolfram Media Inc., USA, 2017

[16] Wolfram MATHEMATICA, https://www.wolfram.com/mathematica/

[17] Lubachevsky B. D., “Efficient parallel simulations of asynchronous cellular arrays”, Complex Systems, 1:6 (1987), 1099–1123 | MR

[18] Overeinder B. J., Sloot P. M. A., “Application of time warp to parallel simulations with asynchronous cellular automata”, Proc. European Simulation Symposium, The Netherlands, 1993, 397–402

[19] Bandman O., “Parallel Simulation of Asynchronous Cellular Automata Evolution”, Cellular Automata, Proc. ACRI 2006, Lecture Notes in Computer Science, 4173, Springer, 2006, 41–48 | DOI | MR

[20] Kireeva A., “Parallel Implementation of Totalistic Cellular Automata Model of Stable Patterns Formation”, Parallel Computing Technologies, Proc. PaCT 2013, Lecture Notes in Computer Science, 7979, ed. V. Malyshkin, Springer, 2013, 330–343 | DOI

[21] Bandman O., “Implementation of large-scale cellular automata models on multi-core computers and clusters”, Proc. HPCS 2013, Helsinki, 2013, 304–310

[22] Achasova S., Bandman O., Markova V., Piskunov S., Parallel Substitution Algorithm. Theory and Application, World Scientific, Singapore, 1994

[23] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Sistemnaya informatika. Sb. nauchn. tr., 10, Izd-vo SO RAN, Novosibirsk, 2006, 59–111

[24] Achasova S.M., Bandman O. L., Korrektnost parallelnykh protsessov, Nauka, Novosibirsk, 1990 | MR

[25] Bandman O., “Parallel composition of asynchronous cellular automata simulating reaction-diffusion processes”, Proc. ACRI 2010, Lecture Notes in Computer Science, 6350, Springer, 2010, 395–398 | DOI | MR

[26] Bandman O., “Parallelization efficiency versus stochasticity in simulation reaction-diffusion by cellular automata”, J. of Supercomputing, 73:2 (2016), 687–699 | DOI

[27] Bandman O. L., “Rezhimy funktsionirovaniya asinkhronnykh kletochnykh avtomatov, modeliruyuschikh nelineinuyu prostranstvennuyu dinamiku”, Prikladnaya diskretnaya matematika, 2015, no. 1927), 105–119

[28] Von Neumann J., Theory of Self-Reproducing Automata, ed. Arthur W. Burks, Univ. of Illinois Press, London, 1966

[29] Wolfram S., Cellular Automata and Complexity, Collected Papers, Westview Press, USA, 2009

[30] Bandman O., “3D Cellular Automata Model of Fluid Permeation through Porous Material”, Parallel Computing Technologies, Proc. PaCT 2013, Lecture Notes in Computer Science, 7979, ed. V. Malyshkin, Springer, 2013, 278–290 | DOI

[31] Nedea S. V., Lukkien J., Jansen A., Hilbers P., Methods for Parallel Simulations of Surface Reactions, arXiv: physics/0209017v1[physics.comp-ph]

[32] Olenev N. N., Osnovy parallelnogo programmirovaniya v sisteme MPI, Izd-vo VTs RAN, M., 2005