@article{SJVM_2017_20_4_a7,
author = {V. T. Shevaldin and O. Ya. Shevaldina},
title = {The {Lebesgue} constant of local cubic splines with equally-spaced knots},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {445--451},
year = {2017},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a7/}
}
TY - JOUR AU - V. T. Shevaldin AU - O. Ya. Shevaldina TI - The Lebesgue constant of local cubic splines with equally-spaced knots JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 445 EP - 451 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a7/ LA - ru ID - SJVM_2017_20_4_a7 ER -
V. T. Shevaldin; O. Ya. Shevaldina. The Lebesgue constant of local cubic splines with equally-spaced knots. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 445-451. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a7/
[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[2] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[3] Shevaldin V. T., Approksimatsiya lokalnymi splainami, UrO RAN, Ekaterinburg, 2014
[4] Strelkova E. V., Shevaldin V. T., “On Lebesgue constants of local parabolic splines”, Proc. of the Steklov Institute of Mathematics, 289, suppl. 1 (2015), 192–198 | DOI | MR | Zbl
[5] Strelkova E. V., Shevaldin V. T., “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Proc. of the Steklov Institute of Mathematics, 296, suppl. 1 (2017), 206–217 | DOI | MR
[6] Strelkova E. V., Shevaldin V. T., “O ravnomernykh konstantakh Lebega lokalnykh trigonometricheskikh splainov tretego poryadka”, Tr. Instituta matematiki i mekhaniki UrO RAN, 22, no. 2, 2016, 245–254 | DOI | MR
[7] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “Local approximation by splines with displacement of nodes”, Siberian Advances in Mathematics, 23:1 (2013), 63–75 | MR | Zbl
[8] Richards F., “Best bounds for the uniform periodic spline interpolation operator”, J. Approx. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl
[9] Volkov Yu. S., Subbotin Yu. N., “Fifty years of Schoenberg's problem on the convergence of spline interpolation”, Proc. of the Steklov Institute of Mathematics, 288, suppl. 1 (2015), 222–237 | DOI | MR