Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 393-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, there are international microbarograph networks, with high resolution recording the wave pressure variations on the Earth's surface. This increases the interest in the problems of wave propagation in the atmosphere from variations in the atmospheric pressure. A complete system of nonlinear hydrodynamic equations for an atmospheric gas with lower boundary conditions in the form of wavelike variations on the Earth's surface is considered. Since the wave amplitudes near the Earth's surface are small, linearized equations are used in the analysis of the problem correctness. With the help of the wave energy functional method, it is shown that in the non-dissipative case, the solution of the boundary value problem is uniquely determined by the variable pressure field on the Earth's surface. The corresponding dissipative problem is correct if, in addition to the pressure field, suitable conditions on the velocity and temperature on the Earth's surface are given. In the case of an isothermal atmosphere, the problem admits analytical solutions that are harmonic in the variables $x$ and $t$. A good agreement between numerical solutions and analytical ones is shown. The study has shown that in the boundary value problem, the temperature and density can rapidly vary near the lower boundary. An example of the solution of a three-dimensional problem with variable pressure on the Earth's surface, taken from experimental observations, is given. The developed algorithms and computer programs can be used to simulate the atmospheric waves from pressure variations on the Earth's surface.
@article{SJVM_2017_20_4_a3,
     author = {Yu. Kudryaeva and S. Kshevetskii and N. Gavrilov and E. Golikova},
     title = {Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {393--412},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/}
}
TY  - JOUR
AU  - Yu. Kudryaeva
AU  - S. Kshevetskii
AU  - N. Gavrilov
AU  - E. Golikova
TI  - Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 393
EP  - 412
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/
LA  - ru
ID  - SJVM_2017_20_4_a3
ER  - 
%0 Journal Article
%A Yu. Kudryaeva
%A S. Kshevetskii
%A N. Gavrilov
%A E. Golikova
%T Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 393-412
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/
%G ru
%F SJVM_2017_20_4_a3
Yu. Kudryaeva; S. Kshevetskii; N. Gavrilov; E. Golikova. Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 393-412. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/

[1] Gossard E. E., Hooke W. H., Waves in the Atmosphere, Elsevier Sci. Publ. Co., Amsterdam–Oxford–New York, 1975

[2] Beer T., Atmospheric Waves, Adam Hilder, London, 1974

[3] Grigorev G. I., “Akustiko-gravitatsionnye volny v atmosfere Zemli”, Izvestiya VUZov. Radiofizika, 17:1 (1999), 3–23

[4] Fritts D. C., Alexander M. J., “Gravity wave dynamics and effects in the middle atmosphere”, Rev. Geophys., 41 (2003), 1003 | DOI

[5] Fritts D. C., Vadas S. L., Wan K., Werne J. A., “Mean and variable forcing of the middle atmosphere by gravity waves”, J. Atmos. Sol.-Terr. Phys., 68 (2006), 247–265 | DOI

[6] Ploogonven R., Snyder Ch., “Inertial gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles”, J. of the Atmospheric Sciences, 64 (2007), 2502–2520 | DOI

[7] Plougonven R., Zhang F., “Internal gravity waves from atmospheric jets and fronts”, Rev. Geophys., 52 (2014), 33–76 | DOI

[8] Medvedev A. S., Gavrilov N. M., “The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere”, J. Atmos. Terr. Phys., 57 (1995), 1221–1231 | DOI

[9] Blanc E., Farges T., Le Pichon A., Heinrich P., “Ten year observations of gravity waves from thunderstorms in western Africa”, J. of Geophysical Research: Atmospheres, 119 (2014), 6409–6418 | DOI

[10] Pierce A. D., Coroniti S. C., “A mechanism for the generation of acoustic-gravity waves during thunder-storm formation”, Nature, 210 (1966), 1209–1210 | DOI

[11] Balachandran N. K., “Gravity waves from thunderstorms”, Monthly weather review, 108 (1980), 804–816 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] Alexander M., May P., Beres J., “Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment”, J. of Geophysical Research, 109 (2004), D20S04, 13 pp. | DOI

[13] Miller D. V., “Thunderstorm induced gravity waves as a potential hazard to commercial aircraft”, Presented at the American Meteorological Society 79th Annual conference (Windham Anatole Hotel, Dallas, TX, January 10–15, 1999), American Meteorological Society, Dallas, 1999

[14] Fovell R., Durran D., Holton J. R., “Numerical simulation of convectively generated stratospheric gravity waves”, J. of the Atmospheric Sciences, 49:16 (1992), 1427–1442 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[15] Gavrilov N. M., Yudin V. A., “Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere”, J. of Geophysical Research, 97 (1992), 7619–7624 | DOI

[16] Gavrilov N. M., Fukao S., “A comparison of seasonal variations of gravity wave intensity observed by the MU radar with a theoretical model”, J. of the Atmospheric Sciences, 56 (1999), 3485–3494 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] Baker D., Schubert G., “Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: mean wind shear and wave–mean flow interaction”, J. of the Atmospheric Sciences, 57 (2000), 200–215 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[18] Fritts D. C., Garten J. F., “Wave breaking and transition to turbulence in stratified shear flows”, J. of the Atmospheric Sciences, 53 (1996), 1057–1085 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[19] Andreassen O., Hvidsten O., Fritts D., Arendt S., “Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution”, J. Fluid. Mech., 367 (1998), 27–46 | DOI | MR | Zbl

[20] Yu Y., Hickey M. P., Liu Y., “A numerical model characterizing internal gravity wave propagation into the upper atmosphere”, Adv. Space Res., 44 (2009), 836–846 | DOI

[21] Liu X., Xu J., Liu H. L., Ma R., “Nonlinear interactions between gravity waves with different wavelengths and diurnal tide”, J. of Geophysical Research, 113 (2008), D08112 | DOI

[22] Liu H. L., Foster B. T., Hagan M. E., McInerney J. M., Maute A., Qian L., Richmond A. D., Roble R. G., Solomon S. C., Garcia R. R., Kinnison D., Marsh D. R., Smith A. K., Richter J., Sassi F., Oberheide J., “Thermosphere extension of the whole atmosphere community climate model”, J. of Geophysical Research, 115 (2010), A12302 | DOI

[23] Gavrilov N. M., Kshevetskii S. P., “Numerical modeling of propagation of breaking nonlinear acoustic-gravity waves from the lower to the upper atmosphere”, Adv. Space Res., 51 (2013), 1168–1174 | DOI

[24] Gavrilov N. M., Kshevetskii S. P., “Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere”, Izvestiya, Atmospheric and Oceanic Physics, 50:1 (2014), 66–72 | DOI

[25] Kshevetskii S. P., Kulichkov S. N., “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution”, Izvestiya, Atmospheric and Oceanic Physics, 51:1 (2015), 42–48 | DOI

[26] Karpov I. V., Kshevetskii S. P., “Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the earth's surface”, Geomagnetism and Aeronomy, 54:4 (2014), 553–562 | DOI | MR

[27] Jonson R. H., Young G. S., “Heat and moisture budjets of tropical mesoscale anvil clouds”, J. of the Atmospheric Sciences, 80 (1983), 2138–2147 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[28] Sao Sabbas F. T., Rampinelli V. T., Santiago J., “Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil”, Ann. Geophys., 27 (2009), 1279–1293 | DOI

[29] Ermakov V. I., Stozhkov Yu. I., Fizika grozovykh oblakov, FIAN, M., 2004

[30] Lehmiller G. S., Bluestein H. B., Neiman P. J., Ralf F. M., Feltz F. W., “Wind structure in a supercell thunder storm as a measured by a UHF wind profiler”, Mon. Weather Rev., 129 (2001), 1968–1986 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[31] Gavrilov N. M., Kshevetskii S. P., Koval A. V., “Verifications of the high-resolution numerical model and polarization relations of atmospheric acoustic-gravity wave”, Geosci. Model Dev., 8 (2015), 1831–1838 | DOI

[32] “AtmoSym” model of atmospheric processes, , 2016 http://atmos.kantiana.ru

[33] Picone J. M., Hedin A. E., Drob D. P., Aikin A. C., “NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues”, J. of Geophysical Research, 107:A12 (2002), SIA 15, 16 pp. | DOI

[34] Banks P. M., Kockarts G., Aeronomy, Part B., Elsevier, New York, 1973

[35] Gavrilov N. M., Kshevetskii S. P., “Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere”, Earth Planets Space, 66 (2014), 88, 8 pp. | DOI

[36] Gavrilov N. M., “Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations”, Atmos. Chem. Phys., 13 (2013), 12107–12116 | DOI

[37] Lax P. D., Wendroff B., “Hyperbolic systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[38] Gavrilov N. M., Kshevetskii S. P., “Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere”, Adv. Space Res., 56:9 (2015), 1833–1843 | DOI

[39] Kshevetskii S. P., “Modelling of propagation of internal gravity waves in gases”, Comp. Math. Math. Phys., 41 (2001), 273–288 | MR | Zbl

[40] Kshevetskii S. P., “Internal gravity waves in nonexponentially density-stratified fluids”, Comp. Math. Math. Phys., 42:10 (2002), 1510–1521 | MR | Zbl