Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_4_a3, author = {Yu. Kudryaeva and S. Kshevetskii and N. Gavrilov and E. Golikova}, title = {Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {393--412}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/} }
TY - JOUR AU - Yu. Kudryaeva AU - S. Kshevetskii AU - N. Gavrilov AU - E. Golikova TI - Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 393 EP - 412 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/ LA - ru ID - SJVM_2017_20_4_a3 ER -
%0 Journal Article %A Yu. Kudryaeva %A S. Kshevetskii %A N. Gavrilov %A E. Golikova %T Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 393-412 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/ %G ru %F SJVM_2017_20_4_a3
Yu. Kudryaeva; S. Kshevetskii; N. Gavrilov; E. Golikova. Correctness of the problem of propagation of nonlinear acoustic-gravity waves in the atmosphere from pressure variations on the lower boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 393-412. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a3/
[1] Gossard E. E., Hooke W. H., Waves in the Atmosphere, Elsevier Sci. Publ. Co., Amsterdam–Oxford–New York, 1975
[2] Beer T., Atmospheric Waves, Adam Hilder, London, 1974
[3] Grigorev G. I., “Akustiko-gravitatsionnye volny v atmosfere Zemli”, Izvestiya VUZov. Radiofizika, 17:1 (1999), 3–23
[4] Fritts D. C., Alexander M. J., “Gravity wave dynamics and effects in the middle atmosphere”, Rev. Geophys., 41 (2003), 1003 | DOI
[5] Fritts D. C., Vadas S. L., Wan K., Werne J. A., “Mean and variable forcing of the middle atmosphere by gravity waves”, J. Atmos. Sol.-Terr. Phys., 68 (2006), 247–265 | DOI
[6] Ploogonven R., Snyder Ch., “Inertial gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles”, J. of the Atmospheric Sciences, 64 (2007), 2502–2520 | DOI
[7] Plougonven R., Zhang F., “Internal gravity waves from atmospheric jets and fronts”, Rev. Geophys., 52 (2014), 33–76 | DOI
[8] Medvedev A. S., Gavrilov N. M., “The nonlinear mechanism of gravity wave generation by meteorological motions in the atmosphere”, J. Atmos. Terr. Phys., 57 (1995), 1221–1231 | DOI
[9] Blanc E., Farges T., Le Pichon A., Heinrich P., “Ten year observations of gravity waves from thunderstorms in western Africa”, J. of Geophysical Research: Atmospheres, 119 (2014), 6409–6418 | DOI
[10] Pierce A. D., Coroniti S. C., “A mechanism for the generation of acoustic-gravity waves during thunder-storm formation”, Nature, 210 (1966), 1209–1210 | DOI
[11] Balachandran N. K., “Gravity waves from thunderstorms”, Monthly weather review, 108 (1980), 804–816 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[12] Alexander M., May P., Beres J., “Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment”, J. of Geophysical Research, 109 (2004), D20S04, 13 pp. | DOI
[13] Miller D. V., “Thunderstorm induced gravity waves as a potential hazard to commercial aircraft”, Presented at the American Meteorological Society 79th Annual conference (Windham Anatole Hotel, Dallas, TX, January 10–15, 1999), American Meteorological Society, Dallas, 1999
[14] Fovell R., Durran D., Holton J. R., “Numerical simulation of convectively generated stratospheric gravity waves”, J. of the Atmospheric Sciences, 49:16 (1992), 1427–1442 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[15] Gavrilov N. M., Yudin V. A., “Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere”, J. of Geophysical Research, 97 (1992), 7619–7624 | DOI
[16] Gavrilov N. M., Fukao S., “A comparison of seasonal variations of gravity wave intensity observed by the MU radar with a theoretical model”, J. of the Atmospheric Sciences, 56 (1999), 3485–3494 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[17] Baker D., Schubert G., “Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: mean wind shear and wave–mean flow interaction”, J. of the Atmospheric Sciences, 57 (2000), 200–215 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[18] Fritts D. C., Garten J. F., “Wave breaking and transition to turbulence in stratified shear flows”, J. of the Atmospheric Sciences, 53 (1996), 1057–1085 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[19] Andreassen O., Hvidsten O., Fritts D., Arendt S., “Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution”, J. Fluid. Mech., 367 (1998), 27–46 | DOI | MR | Zbl
[20] Yu Y., Hickey M. P., Liu Y., “A numerical model characterizing internal gravity wave propagation into the upper atmosphere”, Adv. Space Res., 44 (2009), 836–846 | DOI
[21] Liu X., Xu J., Liu H. L., Ma R., “Nonlinear interactions between gravity waves with different wavelengths and diurnal tide”, J. of Geophysical Research, 113 (2008), D08112 | DOI
[22] Liu H. L., Foster B. T., Hagan M. E., McInerney J. M., Maute A., Qian L., Richmond A. D., Roble R. G., Solomon S. C., Garcia R. R., Kinnison D., Marsh D. R., Smith A. K., Richter J., Sassi F., Oberheide J., “Thermosphere extension of the whole atmosphere community climate model”, J. of Geophysical Research, 115 (2010), A12302 | DOI
[23] Gavrilov N. M., Kshevetskii S. P., “Numerical modeling of propagation of breaking nonlinear acoustic-gravity waves from the lower to the upper atmosphere”, Adv. Space Res., 51 (2013), 1168–1174 | DOI
[24] Gavrilov N. M., Kshevetskii S. P., “Numerical modeling of the propagation of nonlinear acoustic-gravity waves in the middle and upper atmosphere”, Izvestiya, Atmospheric and Oceanic Physics, 50:1 (2014), 66–72 | DOI
[25] Kshevetskii S. P., Kulichkov S. N., “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution”, Izvestiya, Atmospheric and Oceanic Physics, 51:1 (2015), 42–48 | DOI
[26] Karpov I. V., Kshevetskii S. P., “Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the earth's surface”, Geomagnetism and Aeronomy, 54:4 (2014), 553–562 | DOI | MR
[27] Jonson R. H., Young G. S., “Heat and moisture budjets of tropical mesoscale anvil clouds”, J. of the Atmospheric Sciences, 80 (1983), 2138–2147 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[28] Sao Sabbas F. T., Rampinelli V. T., Santiago J., “Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil”, Ann. Geophys., 27 (2009), 1279–1293 | DOI
[29] Ermakov V. I., Stozhkov Yu. I., Fizika grozovykh oblakov, FIAN, M., 2004
[30] Lehmiller G. S., Bluestein H. B., Neiman P. J., Ralf F. M., Feltz F. W., “Wind structure in a supercell thunder storm as a measured by a UHF wind profiler”, Mon. Weather Rev., 129 (2001), 1968–1986 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[31] Gavrilov N. M., Kshevetskii S. P., Koval A. V., “Verifications of the high-resolution numerical model and polarization relations of atmospheric acoustic-gravity wave”, Geosci. Model Dev., 8 (2015), 1831–1838 | DOI
[32] “AtmoSym” model of atmospheric processes, , 2016 http://atmos.kantiana.ru
[33] Picone J. M., Hedin A. E., Drob D. P., Aikin A. C., “NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues”, J. of Geophysical Research, 107:A12 (2002), SIA 15, 16 pp. | DOI
[34] Banks P. M., Kockarts G., Aeronomy, Part B., Elsevier, New York, 1973
[35] Gavrilov N. M., Kshevetskii S. P., “Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere”, Earth Planets Space, 66 (2014), 88, 8 pp. | DOI
[36] Gavrilov N. M., “Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations”, Atmos. Chem. Phys., 13 (2013), 12107–12116 | DOI
[37] Lax P. D., Wendroff B., “Hyperbolic systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[38] Gavrilov N. M., Kshevetskii S. P., “Dynamical and thermal effects of nonsteady nonlinear acoustic-gravity waves propagating from tropospheric sources to the upper atmosphere”, Adv. Space Res., 56:9 (2015), 1833–1843 | DOI
[39] Kshevetskii S. P., “Modelling of propagation of internal gravity waves in gases”, Comp. Math. Math. Phys., 41 (2001), 273–288 | MR | Zbl
[40] Kshevetskii S. P., “Internal gravity waves in nonexponentially density-stratified fluids”, Comp. Math. Math. Phys., 42:10 (2002), 1510–1521 | MR | Zbl