An approximation scheme for a~problem of finding a~subsequence
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 379-392
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a strongly NP-hard Euclidean problem of finding a subsequence in a finite sequence. The criterion of the solution is a minimum sum of squared distances from the elements of a sought subsequence to its geometric center (centroid). It is assumed that a sought subsequence contains a given number of elements. In addition, a sought subsequence should satisfy the following condition: the difference between the indices of each previous and subsequent points is bounded with given lower and upper constants. We present an approximation algorithm of solving the problem and prove that it is a fully polynomial-time approximation scheme (FPTAS) when the space dimension is bounded by a constant.
@article{SJVM_2017_20_4_a2,
author = {A. V. Kelmanov and S. M. Romanchenko and S. A. Khamidullin},
title = {An approximation scheme for a~problem of finding a~subsequence},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {379--392},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a2/}
}
TY - JOUR AU - A. V. Kelmanov AU - S. M. Romanchenko AU - S. A. Khamidullin TI - An approximation scheme for a~problem of finding a~subsequence JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 379 EP - 392 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a2/ LA - ru ID - SJVM_2017_20_4_a2 ER -
%0 Journal Article %A A. V. Kelmanov %A S. M. Romanchenko %A S. A. Khamidullin %T An approximation scheme for a~problem of finding a~subsequence %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 379-392 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a2/ %G ru %F SJVM_2017_20_4_a2
A. V. Kelmanov; S. M. Romanchenko; S. A. Khamidullin. An approximation scheme for a~problem of finding a~subsequence. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 379-392. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a2/