Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_4_a1, author = {A. Gasnikov and E. Gasnikova and P. Dvurechensky and A. Mohammed and E. Chernousova}, title = {About the power law of the {PageRank} vector distribution. {Part~1.} {Numerical} methods for finding the {PageRank} vector}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {359--378}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a1/} }
TY - JOUR AU - A. Gasnikov AU - E. Gasnikova AU - P. Dvurechensky AU - A. Mohammed AU - E. Chernousova TI - About the power law of the PageRank vector distribution. Part~1. Numerical methods for finding the PageRank vector JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 359 EP - 378 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a1/ LA - ru ID - SJVM_2017_20_4_a1 ER -
%0 Journal Article %A A. Gasnikov %A E. Gasnikova %A P. Dvurechensky %A A. Mohammed %A E. Chernousova %T About the power law of the PageRank vector distribution. Part~1. Numerical methods for finding the PageRank vector %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 359-378 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a1/ %G ru %F SJVM_2017_20_4_a1
A. Gasnikov; E. Gasnikova; P. Dvurechensky; A. Mohammed; E. Chernousova. About the power law of the PageRank vector distribution. Part~1. Numerical methods for finding the PageRank vector. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 359-378. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a1/
[1] Agaev R. P., Chebotarev P. Yu., “Skhodimost i ustoichivost v zadachakh soglasovaniya kharakteristik (obzor bazovykh rezultatov)”, Upravlenie bolshimi sistemami, 30.1, 2010, 470–505
[2] Anikin A. S., Gasnikov A. V., Gornov A. Yu., Kamzolov D. I., Maksimov Yu. V., Nesterov Yu. E., “Effektivnye chislennye metody resheniya zadachi PageRank dlya dvazhdy razrezhennykh matrits”, Trudy MFTI, 7:4 (2015), 74–94
[3] Arnold V. I., Tsepnye drobi, Biblioteka “Matematicheskoe prosveschenie”, 14, Izd-vo MTsNMO, M., 2001
[4] Baimurzina D. R., Gasnikov A. V., Gasnikova E. V., “Teoriya makrosistem s tochki zreniya stokhasticheskoi khimicheskoi kinetiki”, Trudy MFTI, 7:4 (2015), 95–103
[5] Batischeva Ya. G., Vedenyapin V. V., “II-i zakon termodinamiki dlya khimicheskoi kinetiki”, Mat. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl
[6] Blank M. L., Ustoichivost i lokalizatsiya v khaoticheskoi dinamike, Izd-vo MTsNMO, M., 2001
[7] Bogdanov K. Yu., “Kinetika sotsialnogo neravenstva”, Kvant, 2004, no. 5, 7–12
[8] Bogdanov K. Yu., “Khischnik i zhertva: uravnenie sosuschestvovaniya”, Kvant, 2014, no. 4–5, 13–17
[9] Buzun N. O., Gasnikov A. V., Goncharov F. O., Gorbachev O. G., Guz S. A., Krymova E. A., Natan A. A., Chernousova E. O., Stokhasticheskii analiz v zadachakh, Chast 1, Izd-vo MFTI, M., 2016
[10] Vaidlikh V., Sotsiodinamika: sistemnyi podkhod k matematicheskomu modelirovaniyu v sotsialnykh naukakh, Per. s angl., 3-e izd., URSS, M., 2010
[11] Galperin G. A., Zemlyakov A. N., Matematicheskie bilyardy, Seriya “Bibliotechka Kvant”, 77, Nauka, M., 1990 | MR
[12] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR
[13] Gasnikov A. V. i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, 2-e izd., Izd-vo MTsNMO, M., 2013
[14] Gasnikov A. V., Effektivnye chislennye metody poiska ravnovesii v bolshikh transportnykh setyakh, Dis. $\dots$ dokt. fiz.-mat. nauk: 05.13.18, Izd-vo MFTI, M., 2016
[15] Gasnikov A. V., Gasnikova E. V., “Ob entropiino-podobnykh funktsionalakh, voznikayuschikh v stokhasticheskoi khimicheskoi kinetike pri kontsentratsii invariantnoi mery i v kachestve funktsii Lyapunova dinamiki kvazisrednikh”, Mat. zametki, 94:6 (2013), 819–827 | DOI | MR | Zbl
[16] Gasnikov A. V., Gasnikova E. V., Mendel M. A., Chepurchenko K. V., “Evolyutsionnye vyvody entropiinoi modeli rascheta matritsy korrespondentsii”, Mat. modelirovanie, 28:4 (2016), 111–124 | MR | Zbl
[17] Gasnikov A. V., Dmitriev D. Yu., “Ob effektivnykh randomizirovannykh algoritmakh poiska vektora PageRank”, Zhurn. vychisl. matem. i mat. fiziki, 55:3 (2015), 355–371 | DOI | MR | Zbl
[18] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike. Vvodnyi kurs, Binom. Laboratoriya znanii, M., 2009
[19] Zang V.-B., Sinergeticheskaya ekonomika: vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir, M., 1999
[20] Zorich V. A., Matematicheskii analiz zadach estestvoznaniya, Izd-vo MTsNMO, M., 2008
[21] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979 | MR
[22] Kalinkin A. V., “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, Uspekhi mat. nauk, 57:2(344) (2002), 23–84 | DOI | MR | Zbl
[23] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965
[24] Kelbert M. Ya., Sukhov Yu. M., Markovskie tsepi kak otpravnaya tochka teorii sluchainykh protsessov i ikh prilozhenii. Veroyatnost i statistika v primerakh i zadachakh, v. 2, Izd-vo MTsNMO, M., 2010
[25] Krasnoselskii M. A., Krein S. G., “Zamechanie o raspredelenii oshibok pri reshenii sistemy lineinykh uravnenii pri pomoschi iteratsionnogo protsessa”, Uspekhi mat. nauk, 7:4(50) (1952), 157–161 | MR | Zbl
[26] Krasnoselskii M. A., Lifshits E. A., Sobolev A. V., Pozitivnye lineinye sistemy. Metod polozhitelnykh operatorov, Nauka, M., 1985 | MR
[27] Lagutin M. B., Naglyadnaya matematicheskaya statistika, Uchebnoe posobie, 3-e izd., Binom. Laboratoriya znanii, M., 2013
[28] Malyshev V. A., Pirogov S. A., “Obratimost i neobratimost v stokhasticheskoi khimicheskoi kinetike”, Uspekhi mat. nauk, 63:1(379) (2008), 3–36 | DOI | MR | Zbl
[29] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972
[30] Polyak B. T., Tremba A. A., “Reshenie zadachi PageRank dlya bolshikh matrits s pomoschyu regulyarizatsii”, Avtomatika i telemekhanika, 2012, no. 11, 144–166 | Zbl
[31] Purmal A. P., Slobodetskaya E. M., Travin S. O., Kak prevraschayutsya veschestva, Seriya “Bibliotechka Kvant”, 36, Nauka, M., 1984
[32] Razzhevaikin V. N., Analiz modelei dinamiki populyatsii, Uchebnoe posobie, Izd-vo MFTI, M., 2010 | MR
[33] Raigorodskii A. M., Modeli interneta, Izd. dom “Intellekt”, Dolgoprudnyi, 2013
[34] Sanov I. N., “O veroyatnosti bolshikh otklonenii sluchainykh velichin”, Mat. sbornik, 42(84):1 (1957), 11–44 | MR | Zbl
[35] Sinai Ya. G., “Kak matematiki izuchayut khaos”, Mat. prosveschenie, 5, 2001, 32–46
[36] Tikhomirov V. M., Rasskazy o maksimumakh i minimumakh, Seriya “Bibliotechka Kvant”, 56, Nauka, M., 1986 | MR
[37] Avrachenkov K., Lebedev D., “PageRank of scale-free growing networks”, Internet Math., 3:2 (2006), 207–232 | DOI | MR
[38] Aldous D., Fill J., Reversible Markov Chains and Random Walks on Graphs, University of California, Berkeley, 2002
[39] Ball K., “An elementary introduction to modern convex geometry”, Flavors of Geometry, MSRI Publ., 31, 1997, 1–58 | MR | Zbl
[40] Blum A., Hopcroft J., Kannan R., Foundations of Data Science, http://www.cs.cornell.edu/jeh/book.pdf
[41] Bogolubsky L., Dvurechensky P., Gasnikov A., Gusev G., Nesterov Yu., Raigorodskii A., Tikhonov A., Zhukovskii M., “Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods”, The Thirtieth Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, 2016
[42] Boucheron S., Lugosi G., Massart P., Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford University Press, 2013 | MR
[43] Brin S., Page L., “The anatomy of a large-scale hypertextual web search engine”, Comput. Network ISDN Syst., 30:1–7 (1998), 107–117 | DOI
[44] Diaconis P., “The Markov chain Monte Carlo revolution”, Bulletin (New Series) of the AMS, 49:2 (2009), 179–205 | MR
[45] Ethier N. S., Kurtz T. G., Markov Processes, John Wiley Sons Inc., New York, 1986 | MR | Zbl
[46] Chung F., “Laplacians and the Cheeger inequality for directed graphs”, Annals of Combinatorics, 9:1 (2005), 1–19 | DOI | MR | Zbl
[47] Franceschet M., “PageRank: Standing on the shoulders of giant”, Communication of ACM, 54:6 (2011), 92–101 | DOI
[48] Grechnikov E. A., “The degree distribution and the number of edges between nodes of given degrees in the Buckley-Osthus model of a random web graph”, Internet Math., 8:3 (2012), 257–287 | DOI | MR | Zbl
[49] Jaynes E. T., Probability Theory. The Logic of Science, Cambridge University Press, 2003 | MR | Zbl
[50] Joulin A., Ollivier Y., “Curvature, concentration and error estimates for Markov chain Monte Carlo”, The Annals of Probability, 38:6 (2010), 2418–2442 | DOI | MR | Zbl
[51] Kapur J. N., Maximum-Entropy Models in Science and Engineering, John Wiley Sons Inc., New York, 1989 | MR | Zbl
[52] Langville A. N., Meyer C. D., Google's PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, 2006 | MR | Zbl
[53] Ledoux M., The Concentration of Measure Phenomenon, Math. Surveys Monogr., 89, AMS, Providence, RI, 2001 | MR | Zbl
[54] Levin D. A., Peres Y., Wilmer E. L., Markov Chain and Mixing Times, AMS, 2009 | MR
[55] Lezaud P., “Chernoff-type bound for finite Markov chains”, The Annals of Applied Probability, 8:3 (1998), 849–867 | DOI | MR | Zbl
[56] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London, 2005 | MR
[57] Montenegro R., Tetali P., “Mathematical aspects of mixing times in Markov chains”, Foundations and Trends in Theoretical Computer Science, 1:3 (2016), 237–354 | DOI | MR
[58] Nesterov Yu., Nemirovski A., “Finding the stationary states of Markov chains by iterative methods”, Appl. Math. and Comput., 255 (2015), 58–65 | MR | Zbl
[59] Pandurangan G., Raghavan P., Upfal E., “Using PageRank to characterize web structure”, Internet Math., 3:1 (2006), 1–20 | DOI | MR | Zbl
[60] Paulin D., “Concentration inequalities for Markov chains by Marton couplings”, Electron J. Probab., 20:79 (2015), 1–32 | MR
[61] Sandholm W., Population Games and Evolutionary Dynamics. Economic Learning and Social Evolution, MIT Press, Cambridge, 2010 | MR
[62] Spielman D., Lecture No 7, , 2009 http://www.cse.cuhk.edu.hk/~chi/csc5160/notes/L07.pdf
[63] Spokoiny V., “Parametric estimation. Finite sample theory”, The Annals of Statistics, 10:6 (2012), 2877–2909 | DOI | MR
[64] Van Handel R., Probability in High Dimension, Lecture Notes ORF 570, Princeton University, 2014
[65] Chaos IX: Chaotic or not? Chaos research today, http://www.chaos-math.org/fr/chaos-ix-chaotique-ou-pas