Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_4_a0, author = {K. V. Voronin and Yu. M. Laevsky}, title = {The flux predictor-corrector scheme for solving {a~3D} heat transfer problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {345--358}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a0/} }
TY - JOUR AU - K. V. Voronin AU - Yu. M. Laevsky TI - The flux predictor-corrector scheme for solving a~3D heat transfer problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 345 EP - 358 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a0/ LA - ru ID - SJVM_2017_20_4_a0 ER -
K. V. Voronin; Yu. M. Laevsky. The flux predictor-corrector scheme for solving a~3D heat transfer problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 4, pp. 345-358. http://geodesic.mathdoc.fr/item/SJVM_2017_20_4_a0/
[1] Voronin K. V., Laevsky Yu. M., “On splitting schemes in the mixed finite element method”, Numerical Analysis and Applications, 5:2 (2012), 150–155 | DOI | Zbl
[2] Voronin K. V., Laevsky Yu. M., “Splitting schemes in the mixed finite-element method for the solution of heat transfer problems”, Mathematical Models and Computer Simulations, 5:2 (2013), 167–174 | DOI | MR | Zbl
[3] Voronin K. V., Laevskii Yu. M., “Ob odnom podkhode k postroeniyu potokovykh skhem rasschepleniya v smeshannom metode konechnykh elementov”, Matematicheskoe modelirovanie, 26:12 (2014), 33–47 | Zbl
[4] Voronin K. V., Laevsky Yu. M., “On the stability of some flux splitting schemes”, Numerical Analysis and Applications, 8:2 (2015), 113–121 | DOI | DOI | MR | Zbl
[5] Voronin K. V., Laevsky Yu. M., “A new approach to constructing splitting schemes in mixed FEM for heat transfer: a priori estimates”, Lecture Notes in Computer Science, 9045, 2015, 417–425 | DOI | MR | Zbl
[6] Voronin K. V., Laevsky Yu. M., “On splitting schemes of predictor-corrector type in mixed finite element method”, Siberian Electronic Mathematical Reports, 12 (2015), 752–765 | DOI | MR | Zbl
[7] Voronin K. V., Laevsky Yu. M., “A new approach to constructing vector splitting schemes in mixed finite element method for parabolic problems”, J. of Numerical Mathematics, 25:1 (2017), 17–34 | DOI | MR | Zbl
[8] Raviart P.-A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Lecture Notes in Mathematics, 606, 1977, 292–315 | DOI | MR | Zbl
[9] Peaceman D. W., Rachford H. H. (Jr.), “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Indust. Appl. Math., 3:1 (1955), 28–41 | DOI | MR | Zbl
[10] Douglas J. (Jr.), Gunn J. E., “A general formulation of alternating direction methods”, Numerische Mathematik, 6:1 (1964), 428–453 | DOI | MR | Zbl
[11] Samarskii A. A., “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 3:3 (1963), 431–466 | MR | Zbl
[12] Yanenko N. N., The Method of Fractional Steps, Springer-Verlag, New York, 1971 | Zbl
[13] Douglas J. (Jr.), “Alternating direction methods for three space variables”, Numerische Mathematik, 4:1 (1962), 41–63 | DOI | MR | Zbl
[14] Arbogast T., Huang C.-S., Yang S.-M., “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | MR | Zbl
[15] Brezzi P., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[16] Vabishchevich P. N., “Flux-splitting schemes for parabolic problems”, Computational Mathematics and Mathematical Physics, 52:8 (2012), 1128–1138 | DOI | MR
[17] Vabishchevich P. N., Additive Operator-Difference Schemes, de Gruyter, Berlin, 2013 | MR
[18] Marchuk G. I., Splitting Methods, Nauka, Moscow, 1988 | MR
[19] Richtmyer G. I., Morton K. W., Difference Methods for Initial-Value Problems, Jhon Wiley and Sons, New York, 1967 | MR