Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_3_a6, author = {I. A. Shalimova and K. K. Sabelfeld}, title = {Solution to a~stochastic {Darcy} equation by the polynomial chaos expansion}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {313--327}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/} }
TY - JOUR AU - I. A. Shalimova AU - K. K. Sabelfeld TI - Solution to a~stochastic Darcy equation by the polynomial chaos expansion JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 313 EP - 327 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/ LA - ru ID - SJVM_2017_20_3_a6 ER -
%0 Journal Article %A I. A. Shalimova %A K. K. Sabelfeld %T Solution to a~stochastic Darcy equation by the polynomial chaos expansion %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 313-327 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/ %G ru %F SJVM_2017_20_3_a6
I. A. Shalimova; K. K. Sabelfeld. Solution to a~stochastic Darcy equation by the polynomial chaos expansion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 313-327. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/
[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[2] Dian-Qing Lirx, Shui-Hua Jianga, ong–Gang Chengb, Chuang-Bing Zhouc, “A comparative study of three collocation point methods for odd order stochastic response surface method”, Structural Engineering and Mechanics, 45:5 (2013), 595–611 | DOI
[3] Ghanem R. G., Spanos P., Stochastic Finite Element: A Spectral Approach, Springer, New York, 1991 | MR
[4] Kurbanmuradov O. A., Sabelfeld K. K., “Stochastic flow simulation and particle transport in a 2D layer of random porous medium”, Transport in Porous Medium, 85 (2010), 347–373 | DOI | MR
[5] Le Maitre O. P., Knio O. M., Spectral Methods for Uncertainty Quantification: with Applications to Computational Fluid Dynamics, Springer, Houten, Netherlands, 2010 | MR | Zbl
[6] Li H., Zhang D., “Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods”, Water Resources Research, 43 (2007), W09409 | DOI
[7] Muller F., Jenny P., Meyer D. W., “Probabilistic collocation and lagrangian sampling for advective tracer transport in randomly heterogeneous porous media”, Advances in Water Resources, 34:12 (2011), 1527–1538 | DOI
[8] Sabelfeld K. K., Brandt O., Kaganer V. M., “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chemistry, 53:2 (2015), 651–669 | DOI | MR | Zbl
[9] Sabelfeld K. K., Mozartova N. S., “Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation”, Math. Comput. Simul., 82 (2011), 295–317 | DOI | MR | Zbl
[10] Schoutens W., Stochastic Processes and Orthogonal Polynomials, Springer, 2000 | MR | Zbl
[11] Shalimova I., Sabelfeld K., “Stochastic polynomial chaos based algorithm for solving PDS with random coefficients”, Monte Carlo Methods and Applications, 20:4 (2014), 279–289 | DOI | MR | Zbl
[12] Thomas Y., Hou W. L., Rozovskii B., Zhou H.-M., “Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics”, J. of Computational Physics, 216 (2006), 687–706 | DOI | MR | Zbl
[13] Wiener N., “The homogenous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl
[14] Xiu D., Lucor D., Su C.-H., Karniadakis G. E., “Stochastic modeling of flow–structure interactions using generalized polynomial chaos”, J. Fluids Eng., 124:1 (2001), 51–59 | DOI
[15] Xiu D., “Fast numerical methods for stochastic computations: A Review”, Commun. Comput. Phys., 5:2–4 (2009), 242–272 | MR | Zbl
[16] Xiu D., Hesthaven J. S., “High-order collocation methods for differential equations with random inputs”, SIAM J. Sci. Comput., 27:3 (2006), 1118–1139 | DOI | MR