Solution to a~stochastic Darcy equation by the polynomial chaos expansion
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 313-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the solution of a boundary value problem for the Darcy equation with a random hydraulic conductivity field. We use an approach based on the polynomial chaos expansion in the probability space of input data. We use the probabilistic collocation method to calculate the coefficients of the polynomial chaos expansion. A computational complexity of this algorithm is defined by the order of a polynomial chaos expansion and the number of terms in the Karhunen–Loève expansion. We calculate different Eulerian and Lagrangian statistical characteristics of the flow by the Monte Carlo and probabilistic collocation methods. Our calculations show a significant advantage of the probabilistic collocation method in comparison with the conventional direct Monte Carlo algorithm.
@article{SJVM_2017_20_3_a6,
     author = {I. A. Shalimova and K. K. Sabelfeld},
     title = {Solution to a~stochastic {Darcy} equation by the polynomial chaos expansion},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {313--327},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/}
}
TY  - JOUR
AU  - I. A. Shalimova
AU  - K. K. Sabelfeld
TI  - Solution to a~stochastic Darcy equation by the polynomial chaos expansion
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 313
EP  - 327
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/
LA  - ru
ID  - SJVM_2017_20_3_a6
ER  - 
%0 Journal Article
%A I. A. Shalimova
%A K. K. Sabelfeld
%T Solution to a~stochastic Darcy equation by the polynomial chaos expansion
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 313-327
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/
%G ru
%F SJVM_2017_20_3_a6
I. A. Shalimova; K. K. Sabelfeld. Solution to a~stochastic Darcy equation by the polynomial chaos expansion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 313-327. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a6/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[2] Dian-Qing Lirx, Shui-Hua Jianga, ong–Gang Chengb, Chuang-Bing Zhouc, “A comparative study of three collocation point methods for odd order stochastic response surface method”, Structural Engineering and Mechanics, 45:5 (2013), 595–611 | DOI

[3] Ghanem R. G., Spanos P., Stochastic Finite Element: A Spectral Approach, Springer, New York, 1991 | MR

[4] Kurbanmuradov O. A., Sabelfeld K. K., “Stochastic flow simulation and particle transport in a 2D layer of random porous medium”, Transport in Porous Medium, 85 (2010), 347–373 | DOI | MR

[5] Le Maitre O. P., Knio O. M., Spectral Methods for Uncertainty Quantification: with Applications to Computational Fluid Dynamics, Springer, Houten, Netherlands, 2010 | MR | Zbl

[6] Li H., Zhang D., “Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods”, Water Resources Research, 43 (2007), W09409 | DOI

[7] Muller F., Jenny P., Meyer D. W., “Probabilistic collocation and lagrangian sampling for advective tracer transport in randomly heterogeneous porous media”, Advances in Water Resources, 34:12 (2011), 1527–1538 | DOI

[8] Sabelfeld K. K., Brandt O., Kaganer V. M., “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chemistry, 53:2 (2015), 651–669 | DOI | MR | Zbl

[9] Sabelfeld K. K., Mozartova N. S., “Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation”, Math. Comput. Simul., 82 (2011), 295–317 | DOI | MR | Zbl

[10] Schoutens W., Stochastic Processes and Orthogonal Polynomials, Springer, 2000 | MR | Zbl

[11] Shalimova I., Sabelfeld K., “Stochastic polynomial chaos based algorithm for solving PDS with random coefficients”, Monte Carlo Methods and Applications, 20:4 (2014), 279–289 | DOI | MR | Zbl

[12] Thomas Y., Hou W. L., Rozovskii B., Zhou H.-M., “Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics”, J. of Computational Physics, 216 (2006), 687–706 | DOI | MR | Zbl

[13] Wiener N., “The homogenous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl

[14] Xiu D., Lucor D., Su C.-H., Karniadakis G. E., “Stochastic modeling of flow–structure interactions using generalized polynomial chaos”, J. Fluids Eng., 124:1 (2001), 51–59 | DOI

[15] Xiu D., “Fast numerical methods for stochastic computations: A Review”, Commun. Comput. Phys., 5:2–4 (2009), 242–272 | MR | Zbl

[16] Xiu D., Hesthaven J. S., “High-order collocation methods for differential equations with random inputs”, SIAM J. Sci. Comput., 27:3 (2006), 1118–1139 | DOI | MR