A difference scheme for a~conjugate-operator model of the heat conduction problem in the polar coordinates
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 297-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the polar coordinates, a discrete analog of the conjugate-operator model of the heat conduction problem preserves the structure of the original model. The difference scheme converges with the second order of accuracy for the cases of discontinuous parameters of the medium in the Fourier law and irregular grids. An efficient algorithm for solving the discrete conjugate-operator model in the case when the thermal conductivity tensor is a single operator.
@article{SJVM_2017_20_3_a5,
     author = {S. B. Sorokin},
     title = {A difference scheme for a~conjugate-operator model of the heat conduction problem in the polar coordinates},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {297--312},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a5/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - A difference scheme for a~conjugate-operator model of the heat conduction problem in the polar coordinates
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 297
EP  - 312
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a5/
LA  - ru
ID  - SJVM_2017_20_3_a5
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T A difference scheme for a~conjugate-operator model of the heat conduction problem in the polar coordinates
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 297-312
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a5/
%G ru
%F SJVM_2017_20_3_a5
S. B. Sorokin. A difference scheme for a~conjugate-operator model of the heat conduction problem in the polar coordinates. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 297-312. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a5/

[1] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR

[2] Karchevskii M. M., Lyashko A. D., “Raznostnye skhemy dlya kvazilineinykh ellipticheskikh uravnenii na polyarnoi setke”, Chislennye metody mekhaniki sploshnoi sredy, 3:4 (1972), 77–88

[3] Glushenkova V. D., Lyashko A. D., “Raznostnye skhemy dlya kvazilineinykh ellipticheskikh uravnenii v polyarnykh koordinatakh”, Diff. uravneniya, 12:6 (1976), 1052–1060 | MR | Zbl

[4] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., Raznostnye analogi osnovnykh differentsialnykh operatorov pervogo poryadka, Preprint No 8, IPM AN SSSR, Moskva, 1981

[5] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Operatornye raznostnye skhemy”, Diff. uravneniya, 17:7 (1981), 1317–1327 | MR

[6] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, DAN SSSR, 258:5 (1981), 1092–1096 | MR

[7] Samarski A. A., Tishkin V. F., Favorksii A. P., Shashkov M., “Employment of the reference-operator methods in the construction of finite difference analog of tensor operations”, Differ. Equ., 18:7 (1983), 881–885 | Zbl

[8] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Staticheskaya zadacha, Preprint No 665, VTs SO AN SSSR, Novosibirsk, 1986 | MR

[9] Konovalov A. N., “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 1:1 (1998), 25–57 | MR | Zbl

[10] Sorokin S. B., “Obosnovanie diskretnogo analoga sopryazhenno-operatornoi modeli zadachi teploprovodnosti”, Sib. zhurn. industr. matematiki, 17:4 (2014), 98–110 | MR | Zbl

[11] Sorokin S. B., “Raznostnaya skhema dlya sopryazhenno-operatornoi modeli zadachi teploprovodnosti na nesoglasovannykh setkakh”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 19:4 (2016), 429–439 | MR | Zbl

[12] Beirao da Veiga L., Lipnikov K., Manzini G., The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation and Applications, 11, Springer-Verlag, Berlin, 2014 | MR | Zbl

[13] Lipnikov K., Manzini G., Shashkov M., “Mimetic finite difference method”, J. of Comput. Physics, 257 (2014), 1163–1227 | DOI | MR | Zbl

[14] Karchevskii M. M., Voloshanovskaya S. N., “Ob approksimatsii tenzora deformatsii v krivolineinykh koordinatakh. Raznostnaya skhema dlya zadachi o ravnovesii uprugogo tsilindra”, Izv. vuzov. Matematika, 1977, no. 10, 70–80 | MR | Zbl

[15] Tsurikov N. V., “Ob approksimatsii kovariantnykh proizvodnykh komponent vektorov i tenzorov v proizvolnoi krivolineinoi sisteme koordinat”, Variatsionnye metody v zadachakh chislennogo analiza, Novosibirsk, 1986, 150–157

[16] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR