Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_3_a3, author = {Z. Lu and L. Li and L. Cao and Ch. Hou}, title = {A priori error estimates of finite volume method for nonlinear optimal control problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {273--287}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/} }
TY - JOUR AU - Z. Lu AU - L. Li AU - L. Cao AU - Ch. Hou TI - A priori error estimates of finite volume method for nonlinear optimal control problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 273 EP - 287 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/ LA - ru ID - SJVM_2017_20_3_a3 ER -
%0 Journal Article %A Z. Lu %A L. Li %A L. Cao %A Ch. Hou %T A priori error estimates of finite volume method for nonlinear optimal control problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 273-287 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/ %G ru %F SJVM_2017_20_3_a3
Z. Lu; L. Li; L. Cao; Ch. Hou. A priori error estimates of finite volume method for nonlinear optimal control problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 273-287. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/