Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_3_a3, author = {Z. Lu and L. Li and L. Cao and Ch. Hou}, title = {A priori error estimates of finite volume method for nonlinear optimal control problem}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {273--287}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/} }
TY - JOUR AU - Z. Lu AU - L. Li AU - L. Cao AU - Ch. Hou TI - A priori error estimates of finite volume method for nonlinear optimal control problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 273 EP - 287 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/ LA - ru ID - SJVM_2017_20_3_a3 ER -
%0 Journal Article %A Z. Lu %A L. Li %A L. Cao %A Ch. Hou %T A priori error estimates of finite volume method for nonlinear optimal control problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 273-287 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/ %G ru %F SJVM_2017_20_3_a3
Z. Lu; L. Li; L. Cao; Ch. Hou. A priori error estimates of finite volume method for nonlinear optimal control problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 273-287. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/
[1] Arada N., Casas E., Troltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comput. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl
[2] Bank R. E., Rose D. J., “Some error estimates for the box method”, SIAM J. Numer. Anal., 24 (1987), 777–787 | DOI | MR | Zbl
[3] Boyer F., Hubert F., “Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities”, SIAM J. Numer. Anal., 6 (2008), 3032–3070 | DOI | MR | Zbl
[4] Casas E., Troltzsch F., “Second- order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations”, Appl. Math. Optim., 39 (1999), 211–227 | DOI | MR | Zbl
[5] Casas E., Troltzsch F., Unger A., “Second order sufficient optimality conditions nonlinear elliptic control problem”, Z. Anal. Anwendungen., 15 (1996), 687–707 | DOI | MR | Zbl
[6] Cai Z., “On the finite volume element method”, Numer. Math., 58 (1991), 713–735 | DOI | MR | Zbl
[7] Chatzipantelidis P., “A finite volume method based on the Crouzeix–Raviart element for elliptic PDEs in two dimensions”, Numer. Math., 82 (1999), 409–432 | DOI | MR | Zbl
[8] Chen Y., Lu Z., High Efficient and Accuracy Numerical Methods for Optimal Control Problems, Science Press, Beijing, 2015
[9] Chen Y., Lu Z., “Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems”, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1415–1423 | DOI | MR | Zbl
[10] Chen Y., Lu Z., “Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods”, Finite Elem. Anal. Des., 46 (2010), 957–965 | DOI | MR
[11] Chen Y., Lu Z., Huang Y., “Superconvergence of triangular Raviart–Thomas mixed finite element methods for bilinear constrained optimal control problem”, Comp. Math. Appl., 66 (2013), 1498–1513 | DOI | MR | Zbl
[12] Chen Y., Lu Z., Guo R., “Error estimates of triangular mixed finite element methods for quasilinear optimal control problems”, Front. Math. China, 1 (2012), 397–413 | DOI | MR
[13] Chen Y., Yi N., Liu W., “A Legendre–Galerkin spectral method for optimal control problems governed by elliptic equations”, SIAM J. Numer. Anal., 46 (2008), 2254–2275 | DOI | MR | Zbl
[14] Chen Z., Li R., Zhou A., “A note on the optimal L2 estimate of the finite volume element method”, Adv. Comput. Math., 16 (2002), 291–303 | DOI | MR | Zbl
[15] Chou S., Li Q., “Error estimates in $L^2$, $H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: a unified approach”, Math. Comp., 69 (2000), 103–120 | DOI | MR | Zbl
[16] Chou S., Ye X., “Unified analysis of finite volume methods for second order elliptic problems”, SIAM J. Numer. Anal., 45 (2007), 1639–1653 | DOI | MR | Zbl
[17] Estep D., Pernice M., Du P., “A posteriori, error analysis of a cell-centered finite volume method for semilinear elliptic problems”, J. Comput. Appl. Math., 2 (2009), 459–472 | DOI | MR | Zbl
[18] Ewing R. E., Lin T., Lin Y., “On the accuracy of the finite volume element method based on piecewise linear polynomials”, SIAM J. Numer. Anal., 39 (2002), 1865–1888 | DOI | MR | Zbl
[19] Falk F. S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44 (1973), 28–47 | DOI | MR | Zbl
[20] Geveci T., “On the approximation of the solution of an optimal control problem governed by an elliptic equation”, RAIRO: Numer. Anal., 13 (1979), 313–328 | DOI | MR | Zbl
[21] Hinze M., “A variational discretization concept in control constrained optimization: the linear-quadratic case”, Comput. Optim. Appl., 30 (2005), 45–61 | DOI | MR | Zbl
[22] Hoppe R. H. W., Iliash Y., Iyyunni C., Sweilam N. H., “A posteriori error estimates for adaptive finite element discretizations of boundary control problems”, J. Numer. Math., 14 (2006), 57–82 | DOI | MR | Zbl
[23] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl
[24] Li R., Liu W., Ma H., Tang T., “Adaptive finite element approximation for distributed elliptic optimal control problems”, SIAM J. Control Optim., 41 (2002), 1321–1349 | DOI | MR | Zbl
[25] Liu W., Yan N., “A posteriori error estimates for convex boundary control problems”, SIAM J. Numer. Anal., 39 (2001), 73–99 | DOI | MR | Zbl
[26] Liu W., Yan N., “A posteriori error estimates for control problems governed by nonlinear elliptic equations”, Appl. Numer. Math., 2 (2003), 173–187 | DOI | MR | Zbl
[27] Liu W., Yan N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008
[28] Liu W., Tiba D., “Error estimates for the finite element approximation of a class of nonlinear optimal control problems”, J. Numer. Func. Optim., 22 (2001), 935–972
[29] Lu Z., “A residual-based posteriori error estimates for $h_p$ finite element solutions of general bilinear optimal control problems”, J. Math. Ineq., 9 (2015), 665–682 | MR | Zbl
[30] Lu Z., Chen Y., “A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems”, Adv. Appl. Math. Mech., 1 (2009), 242–256 | MR | Zbl
[31] Lu Z., Chen Y., Zheng W., “A posteriori error estimates of lowest order Raviart–Thomas mixed finite element methods for bilinear optimal control problems”, East Asia J. Appl. Math., 2 (2012), 108–125 | DOI | MR | Zbl
[32] Luo X., Chen Y., Huang Y., Hou T., “Some error estimates of finite volume element method for parabolic optimal control problems”, Optimal Control Appl. Methods, 35 (2014), 145–165 | DOI | MR | Zbl
[33] Shi Z., Wang M., Finite Element Method, Science Press, Beijing, 2010