A priori error estimates of finite volume method for nonlinear optimal control problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 273-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a priori error estimates for a finite volume element approximation of a nonlinear optimal control problem. The schemes use discretizations base on a finite volume method. For the variational inequality, we use a method of the variational discretization concept to obtain the control. Under some reasonable assumptions, we obtain some optimal order error estimates. The approximate order for the state, costate, and control variables is $O(h^2)$ or $O(h^2\sqrt{|\ln h|})$ in the sense of $L^2$-norm or $L^\infty$-norm. A numerical experiment is presented to test the theoretical results. Finally, we give some conclusions and future works.
@article{SJVM_2017_20_3_a3,
     author = {Z. Lu and L. Li and L. Cao and Ch. Hou},
     title = {A priori error estimates of finite volume method for nonlinear optimal control problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {273--287},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/}
}
TY  - JOUR
AU  - Z. Lu
AU  - L. Li
AU  - L. Cao
AU  - Ch. Hou
TI  - A priori error estimates of finite volume method for nonlinear optimal control problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 273
EP  - 287
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/
LA  - ru
ID  - SJVM_2017_20_3_a3
ER  - 
%0 Journal Article
%A Z. Lu
%A L. Li
%A L. Cao
%A Ch. Hou
%T A priori error estimates of finite volume method for nonlinear optimal control problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 273-287
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/
%G ru
%F SJVM_2017_20_3_a3
Z. Lu; L. Li; L. Cao; Ch. Hou. A priori error estimates of finite volume method for nonlinear optimal control problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 273-287. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a3/

[1] Arada N., Casas E., Troltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comput. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl

[2] Bank R. E., Rose D. J., “Some error estimates for the box method”, SIAM J. Numer. Anal., 24 (1987), 777–787 | DOI | MR | Zbl

[3] Boyer F., Hubert F., “Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities”, SIAM J. Numer. Anal., 6 (2008), 3032–3070 | DOI | MR | Zbl

[4] Casas E., Troltzsch F., “Second- order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations”, Appl. Math. Optim., 39 (1999), 211–227 | DOI | MR | Zbl

[5] Casas E., Troltzsch F., Unger A., “Second order sufficient optimality conditions nonlinear elliptic control problem”, Z. Anal. Anwendungen., 15 (1996), 687–707 | DOI | MR | Zbl

[6] Cai Z., “On the finite volume element method”, Numer. Math., 58 (1991), 713–735 | DOI | MR | Zbl

[7] Chatzipantelidis P., “A finite volume method based on the Crouzeix–Raviart element for elliptic PDEs in two dimensions”, Numer. Math., 82 (1999), 409–432 | DOI | MR | Zbl

[8] Chen Y., Lu Z., High Efficient and Accuracy Numerical Methods for Optimal Control Problems, Science Press, Beijing, 2015

[9] Chen Y., Lu Z., “Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems”, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1415–1423 | DOI | MR | Zbl

[10] Chen Y., Lu Z., “Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods”, Finite Elem. Anal. Des., 46 (2010), 957–965 | DOI | MR

[11] Chen Y., Lu Z., Huang Y., “Superconvergence of triangular Raviart–Thomas mixed finite element methods for bilinear constrained optimal control problem”, Comp. Math. Appl., 66 (2013), 1498–1513 | DOI | MR | Zbl

[12] Chen Y., Lu Z., Guo R., “Error estimates of triangular mixed finite element methods for quasilinear optimal control problems”, Front. Math. China, 1 (2012), 397–413 | DOI | MR

[13] Chen Y., Yi N., Liu W., “A Legendre–Galerkin spectral method for optimal control problems governed by elliptic equations”, SIAM J. Numer. Anal., 46 (2008), 2254–2275 | DOI | MR | Zbl

[14] Chen Z., Li R., Zhou A., “A note on the optimal L2 estimate of the finite volume element method”, Adv. Comput. Math., 16 (2002), 291–303 | DOI | MR | Zbl

[15] Chou S., Li Q., “Error estimates in $L^2$, $H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: a unified approach”, Math. Comp., 69 (2000), 103–120 | DOI | MR | Zbl

[16] Chou S., Ye X., “Unified analysis of finite volume methods for second order elliptic problems”, SIAM J. Numer. Anal., 45 (2007), 1639–1653 | DOI | MR | Zbl

[17] Estep D., Pernice M., Du P., “A posteriori, error analysis of a cell-centered finite volume method for semilinear elliptic problems”, J. Comput. Appl. Math., 2 (2009), 459–472 | DOI | MR | Zbl

[18] Ewing R. E., Lin T., Lin Y., “On the accuracy of the finite volume element method based on piecewise linear polynomials”, SIAM J. Numer. Anal., 39 (2002), 1865–1888 | DOI | MR | Zbl

[19] Falk F. S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44 (1973), 28–47 | DOI | MR | Zbl

[20] Geveci T., “On the approximation of the solution of an optimal control problem governed by an elliptic equation”, RAIRO: Numer. Anal., 13 (1979), 313–328 | DOI | MR | Zbl

[21] Hinze M., “A variational discretization concept in control constrained optimization: the linear-quadratic case”, Comput. Optim. Appl., 30 (2005), 45–61 | DOI | MR | Zbl

[22] Hoppe R. H. W., Iliash Y., Iyyunni C., Sweilam N. H., “A posteriori error estimates for adaptive finite element discretizations of boundary control problems”, J. Numer. Math., 14 (2006), 57–82 | DOI | MR | Zbl

[23] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl

[24] Li R., Liu W., Ma H., Tang T., “Adaptive finite element approximation for distributed elliptic optimal control problems”, SIAM J. Control Optim., 41 (2002), 1321–1349 | DOI | MR | Zbl

[25] Liu W., Yan N., “A posteriori error estimates for convex boundary control problems”, SIAM J. Numer. Anal., 39 (2001), 73–99 | DOI | MR | Zbl

[26] Liu W., Yan N., “A posteriori error estimates for control problems governed by nonlinear elliptic equations”, Appl. Numer. Math., 2 (2003), 173–187 | DOI | MR | Zbl

[27] Liu W., Yan N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008

[28] Liu W., Tiba D., “Error estimates for the finite element approximation of a class of nonlinear optimal control problems”, J. Numer. Func. Optim., 22 (2001), 935–972

[29] Lu Z., “A residual-based posteriori error estimates for $h_p$ finite element solutions of general bilinear optimal control problems”, J. Math. Ineq., 9 (2015), 665–682 | MR | Zbl

[30] Lu Z., Chen Y., “A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems”, Adv. Appl. Math. Mech., 1 (2009), 242–256 | MR | Zbl

[31] Lu Z., Chen Y., Zheng W., “A posteriori error estimates of lowest order Raviart–Thomas mixed finite element methods for bilinear optimal control problems”, East Asia J. Appl. Math., 2 (2012), 108–125 | DOI | MR | Zbl

[32] Luo X., Chen Y., Huang Y., Hou T., “Some error estimates of finite volume element method for parabolic optimal control problems”, Optimal Control Appl. Methods, 35 (2014), 145–165 | DOI | MR | Zbl

[33] Shi Z., Wang M., Finite Element Method, Science Press, Beijing, 2010