Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_3_a2, author = {A. N. Kremlev}, title = {The plane wave refraction on convex and concave obtuse angles in geometric acoustics approximation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {251--271}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a2/} }
TY - JOUR AU - A. N. Kremlev TI - The plane wave refraction on convex and concave obtuse angles in geometric acoustics approximation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 251 EP - 271 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a2/ LA - ru ID - SJVM_2017_20_3_a2 ER -
%0 Journal Article %A A. N. Kremlev %T The plane wave refraction on convex and concave obtuse angles in geometric acoustics approximation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 251-271 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a2/ %G ru %F SJVM_2017_20_3_a2
A. N. Kremlev. The plane wave refraction on convex and concave obtuse angles in geometric acoustics approximation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 251-271. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a2/
[1] Alekseev A. S., Babich V. M., Gelchinskii B. Ya., “Luchevoi metod vychisleniya intensivnosti volnovykh frontov”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 5 (1961), 3–24
[2] Cerveny V., Seismic Ray Theory, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[3] Uizem D., Lineinye i nelineinye volny, Per. s angl. pod red. A. B. Shabata, Mir, M., 1977
[4] Aki K., Richards P., Kolichestvennaya seismologiya. Teoriya i metody, v. 1, Mir, M., 1983
[5] Sethian J. A., “A fast marching level set method for monotonically advancing fronts”, Proc. of the National Academy of Sciences, 93:4 (1996), 1591–1595 | DOI | MR | Zbl
[6] Zhao H., “A fast sweeping method for eikonal equations”, Mathematics of Computation, 74 (2005), 603–627 | DOI | MR | Zbl
[7] Vidale J., “Finite-difference calculation of travel times”, Bull. of the Seismological Society of America, 78:6 (1988), 2062–2076
[8] Podvin P., Lecomte I., “Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools”, Geophysical J. Int., 105:1 (1991), 271–284 | DOI
[9] Crandall M., Lions P., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[10] Nikitin A. A., Serdyukov A. S., Duchkov A. A., “Parallelnyi algoritm resheniya uravneniya eikonala dlya trekhmernykh zadach seismorazvedki”, Vestnik NGU. Seriya: Informatsionnye tekhnologii, 13:3 (2015), 19–28
[11] Kim S., “The most-energetic traveltime of seismic waves”, Applied Mathematics Letters, 14 (2001), 313–319 | DOI | Zbl
[12] Geoltrain S., Brac J., “Can we image complex structures with first-arrival traveltime”, Geophysics, 58:4 (1993), 564–575 | DOI
[13] Van Trier J., Symes W. W., “Upwind finite-difference calculation of traveltimes”, Geophysics, 56 (1991), 812–821 | DOI
[14] Belfi C. D., Second and Third Order ENO Methods for the Eikonal Equation., Technical report/ The Rice Inversion Project, Rice University, Houston, Texas, USA, 1997
[15] Quin J., Symes W. W., “An adaptive finite-difference method for traveltimes and amplitudes”, Geophysics, 67 (2002), 167–176 | DOI
[16] Karlsen K. H., Towers J. D., “Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux”, Chinese Ann. Math. Ser. B, 25 (2004), 287–318 | DOI | MR | Zbl
[17] LeVeque R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zurich, Birkhauser Verlag, Basel, 1990 | MR | Zbl
[18] Keller J. B., “Geometrical theory of diffraction”, J. Opt. Soc. Am., 52 (1962), 116–130 | DOI | MR
[19] Klem-Musatov K. D., Aizenberg A. M., “Seismic modeling by methods of the theory of edge waves”, Geophysics, 57 (1985), 90–105
[20] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matematicheskii sbornik, 47(89):3 (1959), 271–306 | MR | Zbl
[21] Jeong W.-K., Whitaker R., “A fast iterative method for eikonal equations”, SIAM J. on Scientific Computing, 30:5 (2008), 2512–2534 | DOI | MR | Zbl
[22] Crandall M. G., Evans L. C., Lions P. L., “Some properties of viscosity solutions of Hamilton–Jacobi equations”, Trans. of the American Mathematical Society, 282:2 (1984), 487–502 | DOI | MR | Zbl