Optimal resource consumption control of perturbed systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 223-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for calculating the optimal consumption of the resource control of perturbed dynamic systems. This method includes both normal and singular solutions. According to the method proposed the problem is subdivided into three independent tasks: 1) a consideration of the effects of perturbations on the system; 2) computation of the optimal control structure; 3) computation of the switching moments of optimal control. A consideration of the effects of perturbations on the system and transfer to a non-zero final state are reduced to the transformation of the initial and final states of the systems. The structure calculation is based on the relation between deviations in the initial conditions of the conjugate systems and deviations of the phase trajectory at the completion instant. An iterative algorithm has been developed, its characteristics being considered. The results of modeling and numerical calculations are given.
@article{SJVM_2017_20_3_a0,
     author = {V. M. Aleksandrov},
     title = {Optimal resource consumption control of perturbed systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {223--238},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a0/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Optimal resource consumption control of perturbed systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 223
EP  - 238
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a0/
LA  - ru
ID  - SJVM_2017_20_3_a0
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Optimal resource consumption control of perturbed systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 223-238
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a0/
%G ru
%F SJVM_2017_20_3_a0
V. M. Aleksandrov. Optimal resource consumption control of perturbed systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 3, pp. 223-238. http://geodesic.mathdoc.fr/item/SJVM_2017_20_3_a0/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | MR

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[4] Singh T., “Fuel/time optimal control of the benchmark problem”, J. Guid. Control Dyn., 18:8 (1995), 1225–1231 | DOI | Zbl

[5] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po “raskhodu topliva” upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izvestiya RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[6] Dewell L. D., Speyer J. L., “Fuel-optimal periodic control and regulation in constrained hypersonic flight”, J. Guid. Control Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[7] Liu S. W., Singh T., “Fuel/time optimal control of spacecraft maneuvers”, J. Guid. Control Dyn., 20:2 (1997), 394–397 | DOI | MR | Zbl

[8] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zhurn. vychisl. matem. i mat. fiziki, 39:3 (1999), 418–430 | MR | Zbl

[9] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67

[10] Aleksandrov V. M., “Optimalnoe po raskhodu resursov upravlenie lineinymi sistemami”, Zhurn. vychisl. matem. i mat. fiziki, 51:4 (2011), 562–579 | MR | Zbl

[11] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR

[12] Lyubushin A. A., “O primenenii modifikatsii metoda posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 22:1 (1982), 30–35 | MR | Zbl

[13] Grachev N. I., Evtushenko Yu. G., “Biblioteka programm dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 19:2 (1979), 367–387 | MR | Zbl

[14] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii. Ch. 2. Zadachi upravleniya, Izd-vo “Universitetskoe”, Minsk, 1984 | MR | Zbl

[15] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[16] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (2006), 25–76 | DOI | MR | Zbl

[17] Aleksandrov V. M., “Kvazioptimalnoe upravlenie dinamicheskimi sistemami”, Avtomatika i telemekhanika, 2016, no. 7, 47–67 | Zbl

[18] Aleksandrov V. M., “Vychislenie optimalnogo upravleniya v realnom vremeni”, Zhurn. vychisl. matem. i mat. fiziki, 52:10 (2012), 1778–1800 | MR | Zbl

[19] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:1 (2007), 1–28 | Zbl

[20] Aleksandrov V. M., Dykhta V. A., “Priblizhennoe reshenie zadachi minimizatsii raskhoda resursov. II. Otsenki blizosti upravlenii”, Sib. zhurn. industrialnoi matematiki, 14:3 (2011), 3–13 | MR | Zbl