@article{SJVM_2017_20_2_a7,
author = {T. Hou and K. Wang and Y. Xiong and X. Xiao and Sh. Zhang},
title = {Discrete maximum-norm stability of a~linearized second order finite difference scheme for {Allen{\textendash}Cahn} equation},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {215--222},
year = {2017},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/}
}
TY - JOUR AU - T. Hou AU - K. Wang AU - Y. Xiong AU - X. Xiao AU - Sh. Zhang TI - Discrete maximum-norm stability of a linearized second order finite difference scheme for Allen–Cahn equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 215 EP - 222 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/ LA - ru ID - SJVM_2017_20_2_a7 ER -
%0 Journal Article %A T. Hou %A K. Wang %A Y. Xiong %A X. Xiao %A Sh. Zhang %T Discrete maximum-norm stability of a linearized second order finite difference scheme for Allen–Cahn equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 215-222 %V 20 %N 2 %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/ %G ru %F SJVM_2017_20_2_a7
T. Hou; K. Wang; Y. Xiong; X. Xiao; Sh. Zhang. Discrete maximum-norm stability of a linearized second order finite difference scheme for Allen–Cahn equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 215-222. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/
[1] Allen S. M., Cahn J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI
[2] Choi J. W., Lee H. G., Jeong D., et al., “An unconditionally gradient stable numerical method for solving the Allen–Cahn equation”, Physica A: Statistical Mechanics and its Applications, 388:9 (2009), 1791–1803 | DOI | MR
[3] Eyre D. J., An unconditionally stable one-step scheme for gradient systems, http://www.math.utah.edu/~eyre/research/methods/stable.ps
[4] Feng X., Prohl A., “Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows”, Numer. Math., 94:1 (2003), 33–65 | DOI | MR | Zbl
[5] Feng X., Song H., Tang T., Yang J., “Nonlinearly stable implicit-explicit methods for the Allen–Cahn equation”, Inverse Probl. Imaging, 7:3 (2013), 679–695 | DOI | MR | Zbl
[6] Feng X., Tang T., Yang J., “Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models”, East Asian J. on Appl. Math., 3:1 (2003), 59–80 | DOI | MR
[7] Kim J., “Phase-field models for multi-component fluid flows”, Commun. Comput. Phys., 12:3 (2012), 613–661 | DOI | MR
[8] Shen J., Yang X., “Numerical approximations of Allen–Cahn and Cahn–Hilliard equations”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1669–1691 | DOI | MR | Zbl
[9] Yang X., “Error analysis of stabilized semi-implicit method of Allen–Cahn equation”, Discrete Contin. Dyn. Syst. Ser. B, 11:4 (2009), 1057–1070 | DOI | MR | Zbl
[10] Zhang J., Du Q., “Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit”, SIAM J. Sci. Comput., 31:4 (2009), 3042–3063 | DOI | MR | Zbl