Discrete maximum-norm stability of a~linearized second order finite difference scheme for Allen--Cahn equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 215-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we use finite difference methods for solving the Allen–Cahn equation which contains small perturbation parameters and strong nonlinearity. We consider a linearized second-order three level scheme in time and a second-order finite difference approach in space, and we establish discrete boundedness stability in maximum norm: if the initial data is bounded by 1, then the numerical solutions in later times can also be bounded uniformly by 1. We will show that the main result can be obtained under certain.
@article{SJVM_2017_20_2_a7,
     author = {T. Hou and K. Wang and Y. Xiong and X. Xiao and Sh. Zhang},
     title = {Discrete maximum-norm stability of a~linearized second order finite difference scheme for {Allen--Cahn} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {215--222},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/}
}
TY  - JOUR
AU  - T. Hou
AU  - K. Wang
AU  - Y. Xiong
AU  - X. Xiao
AU  - Sh. Zhang
TI  - Discrete maximum-norm stability of a~linearized second order finite difference scheme for Allen--Cahn equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 215
EP  - 222
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/
LA  - ru
ID  - SJVM_2017_20_2_a7
ER  - 
%0 Journal Article
%A T. Hou
%A K. Wang
%A Y. Xiong
%A X. Xiao
%A Sh. Zhang
%T Discrete maximum-norm stability of a~linearized second order finite difference scheme for Allen--Cahn equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 215-222
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/
%G ru
%F SJVM_2017_20_2_a7
T. Hou; K. Wang; Y. Xiong; X. Xiao; Sh. Zhang. Discrete maximum-norm stability of a~linearized second order finite difference scheme for Allen--Cahn equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 215-222. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a7/

[1] Allen S. M., Cahn J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI

[2] Choi J. W., Lee H. G., Jeong D., et al., “An unconditionally gradient stable numerical method for solving the Allen–Cahn equation”, Physica A: Statistical Mechanics and its Applications, 388:9 (2009), 1791–1803 | DOI | MR

[3] Eyre D. J., An unconditionally stable one-step scheme for gradient systems, http://www.math.utah.edu/~eyre/research/methods/stable.ps

[4] Feng X., Prohl A., “Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows”, Numer. Math., 94:1 (2003), 33–65 | DOI | MR | Zbl

[5] Feng X., Song H., Tang T., Yang J., “Nonlinearly stable implicit-explicit methods for the Allen–Cahn equation”, Inverse Probl. Imaging, 7:3 (2013), 679–695 | DOI | MR | Zbl

[6] Feng X., Tang T., Yang J., “Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models”, East Asian J. on Appl. Math., 3:1 (2003), 59–80 | DOI | MR

[7] Kim J., “Phase-field models for multi-component fluid flows”, Commun. Comput. Phys., 12:3 (2012), 613–661 | DOI | MR

[8] Shen J., Yang X., “Numerical approximations of Allen–Cahn and Cahn–Hilliard equations”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1669–1691 | DOI | MR | Zbl

[9] Yang X., “Error analysis of stabilized semi-implicit method of Allen–Cahn equation”, Discrete Contin. Dyn. Syst. Ser. B, 11:4 (2009), 1057–1070 | DOI | MR | Zbl

[10] Zhang J., Du Q., “Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit”, SIAM J. Sci. Comput., 31:4 (2009), 3042–3063 | DOI | MR | Zbl