Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 201-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method based on collocation of exponential B-splines to obtain numerical solution of nonlinear second order one dimensional hyperbolic equation subject to appropriate initial and Dirichlet boundary conditions. The method is a combination of B-spline collocation method in space and two stage, second order strong-stability-preserving Runge–Kutta method in time. The proposed method is shown to be unconditionally stable. The efficiency and accuracy of the method are successfully described by applying the method to a few test problems.
@article{SJVM_2017_20_2_a6,
     author = {Swarn Singh and Suruchi Singh and R. Arora},
     title = {Numerical solution of second order one dimensional hyperbolic equation by exponential {B-spline} collocation method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a6/}
}
TY  - JOUR
AU  - Swarn Singh
AU  - Suruchi Singh
AU  - R. Arora
TI  - Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 201
EP  - 213
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a6/
LA  - ru
ID  - SJVM_2017_20_2_a6
ER  - 
%0 Journal Article
%A Swarn Singh
%A Suruchi Singh
%A R. Arora
%T Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 201-213
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a6/
%G ru
%F SJVM_2017_20_2_a6
Swarn Singh; Suruchi Singh; R. Arora. Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 201-213. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a6/

[1] Gao F., Chi C., “Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation”, Appl. Math. and Comput., 187:2 (2007), 1272–1276 | MR | Zbl

[2] Mohanty R. K., “An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients”, Appl. Math. and Comput., 165:1 (2005), 229–236 | MR | Zbl

[3] Mohanty R. K., Singh S., “High accuracy Numerov type discretization for the solution of one-space dimensional non-linear wave equations with variable coefficients”, J. of Advanced Research in Scientific Computing, 3 (2011), 53–66 | MR

[4] Mohanty R. K., Gopal V., “A fourth-order finite difference method based on spline in tension approximation for the solution of one-space dimensional second-order quasi-linear hyperbolic equations”, Advances in Difference Equations, 70:1 (2013), 1–20 | MR

[5] Mohanty R. K., “An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation”, Appl. Math. Letters, 17 (2004), 101–105 | DOI | MR | Zbl

[6] Mittal R. C., Bhatia R., “Numerical solution of some nonlinear wave equations using modified cubic B-spline differential quadrature method”, Proc. Int. Conf. on Advances in Computing, Communications and Informatics, 2014, 433–439 | DOI

[7] Mittal R. C., Bhatia R., “Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method”, Appl. Math. and Comput., 220 (2013), 496–506 | MR | Zbl

[8] Dehghan M., Shokri A., “A numerical method for solving the hyperbolic telegraph equation”, Numerical Methods for Partial Differential Equations, 24:4 (2008), 1080–1093 | DOI | MR | Zbl

[9] Dosti M., Nazemi A., “Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation”, J. of Information and Computing Science, 7:2 (2012), 83–90

[10] Dosti M., Nazemi A., “Solving one-dimensional hyperbolic telegraph equation using cubic B-spline quasi-interpolation”, Inter. J. of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5:4 (2011), 674–679

[11] Ding H., Zhang Y., “Parameters spline methods for the solution of hyperbolic equations”, Appl. Math. and Comput., 204:2 (2008), 938–941 | MR | Zbl

[12] Liu Li-Bin, Liu Huan-Wen, “Compact difference schemes for solving telegraphic equations with Neumann boundary conditions”, Appl. Math. And Comput., 219:19 (2013), 10112–10121 | MR | Zbl

[13] Kharenko D., Padovani C., Pagni A., Pasquinelli G., Semin L., “Free longitudinal vibrations of bimodular beams: a comparative study”, Int. J. of Structural Stability and Dynamics, 11:1 (2011), 23–56 | DOI | MR | Zbl

[14] Mohammadi R., “Exponential B-spline solution of convection-diffusion equations”, Appl. Math., 4:6 (2013), 933–944 | DOI

[15] Ersoy O., Dag I., “The exponential cubic B-spline algorithm for Korteweg–de Vries equation”, Advances in Numerical Analysis, 2015 (2015), Article ID 367056, 8 pp. | DOI | MR | Zbl

[16] Spiteri R., Ruuth S., “A new class of optimal high-order strong-stability-preserving time discretization methods”, SIAM J. on Numerical Analysis, 40:2 (2002), 469–491 | DOI | MR | Zbl

[17] McCartin B. J., “Theory of exponential splines”, J. of Approximation Theory, 66:1 (1991), 1–23 | DOI | MR | Zbl

[18] McCartin B. J., “Computation of exponential splines”, SIAM J. on Scientific and Statistical Computing, 2 (1990), 242–262 | DOI | MR | Zbl

[19] Späth H., “Exponential spline interpolation”, Computing, 4 (1969), 225–233 | DOI | MR | Zbl

[20] Smith G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, 2nd ed., Oxford University Press, Oxford, 1978 | MR | Zbl