@article{SJVM_2017_20_2_a2,
author = {K. V. Voronin and A. V. Grigoriev and Yu. M. Laevsky},
title = {On an approach to modeling wells},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {145--155},
year = {2017},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/}
}
K. V. Voronin; A. V. Grigoriev; Yu. M. Laevsky. On an approach to modeling wells. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 145-155. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/
[1] Laevsky Yu. M., “A problem with wells for the steady diffusion equation”, Numerical Analysis and Applications, 3:2 (2010), 101–117 | DOI
[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR
[3] Chekalin A. N., Chislennye resheniya zadach filtratsii v vodoneftyanykh plastakh, Izd-vo Kazanskogo universiteta, Kazan, 1982
[4] Galanin M. P., Lazareva S. A., Savenkov E. B., Chislennoe issledovanie metoda konechnykh superelementov na primere resheniya zadachi o skvazhine dlya uravneniya Laplasa, Preprint No 79, IPM im. M. V. Keldysha, M., 2005
[5] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[6] Raviart P.-A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Proc. Sympos. Mathematical Aspects of the Finite Element Method (Rome, 1975), Lect. Notes in Math., 606, Springer-Verlag, Berlin, 1977, 292–315 | DOI | MR
[7] Geuzaine Ch., Remacle J.-F., A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, http://geuz.org/gmsh/ | MR
[8] Logg A., Mardal K.-A., Wells G. N., Automated Solution of Differential Equations by the Finite Element Method, The FEniCS Book, Springer, 2011 | MR
[9] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Soc. for Industrial and Applied Math., Philadelphia, 2003 | MR | Zbl