On an approach to modeling wells
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 145-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a numerical study of the diffusion problem in the presence of wells, at which integral boundary conditions are used. It is shown that the method proposed earlier is fully efficient and offers certain advantages as compared with the direct modeling of wells based on the finite element method. The results of calculations for the two wells are presented.
@article{SJVM_2017_20_2_a2,
     author = {K. V. Voronin and A. V. Grigoriev and Yu. M. Laevsky},
     title = {On an approach to modeling wells},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {145--155},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/}
}
TY  - JOUR
AU  - K. V. Voronin
AU  - A. V. Grigoriev
AU  - Yu. M. Laevsky
TI  - On an approach to modeling wells
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 145
EP  - 155
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/
LA  - ru
ID  - SJVM_2017_20_2_a2
ER  - 
%0 Journal Article
%A K. V. Voronin
%A A. V. Grigoriev
%A Yu. M. Laevsky
%T On an approach to modeling wells
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 145-155
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/
%G ru
%F SJVM_2017_20_2_a2
K. V. Voronin; A. V. Grigoriev; Yu. M. Laevsky. On an approach to modeling wells. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 2, pp. 145-155. http://geodesic.mathdoc.fr/item/SJVM_2017_20_2_a2/

[1] Laevsky Yu. M., “A problem with wells for the steady diffusion equation”, Numerical Analysis and Applications, 3:2 (2010), 101–117 | DOI

[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[3] Chekalin A. N., Chislennye resheniya zadach filtratsii v vodoneftyanykh plastakh, Izd-vo Kazanskogo universiteta, Kazan, 1982

[4] Galanin M. P., Lazareva S. A., Savenkov E. B., Chislennoe issledovanie metoda konechnykh superelementov na primere resheniya zadachi o skvazhine dlya uravneniya Laplasa, Preprint No 79, IPM im. M. V. Keldysha, M., 2005

[5] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[6] Raviart P.-A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Proc. Sympos. Mathematical Aspects of the Finite Element Method (Rome, 1975), Lect. Notes in Math., 606, Springer-Verlag, Berlin, 1977, 292–315 | DOI | MR

[7] Geuzaine Ch., Remacle J.-F., A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, http://geuz.org/gmsh/ | MR

[8] Logg A., Mardal K.-A., Wells G. N., Automated Solution of Differential Equations by the Finite Element Method, The FEniCS Book, Springer, 2011 | MR

[9] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Soc. for Industrial and Applied Math., Philadelphia, 2003 | MR | Zbl