Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_1_a8, author = {B. M. Shumilov}, title = {About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {107--120}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/} }
TY - JOUR AU - B. M. Shumilov TI - About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 107 EP - 120 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/ LA - ru ID - SJVM_2017_20_1_a8 ER -
B. M. Shumilov. About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 107-120. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/
[1] Chui Ch., Vvedenie v veivlety, Per. s angl., Mir, M., 2001
[2] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[3] Lyche T., M\'ørken K., Quak E., “Theory and algorithms for non-uniform spline wavelets”, Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR | Zbl
[4] Cohen A., Daubechies I., Feauveau J. C., “Biorthogonal bases of compactly supported wavelets”, Comm. Pure and Appl. Math., 45 (1992), 485–560 | DOI | MR | Zbl
[5] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl
[6] Bittner K., A new view on biorthogonal spline wavelets, Preprint, Series: 2005-03, Universität Ulm, Ulm, 2005 | MR
[7] Ĉerná D., Finêk V., “Construction of optimally conditioned cubic spline wavelets on the interval”, Adv. Comput. Math., 34 (2011), 219–252 | DOI | MR | Zbl
[8] Ĉerná D., Finêk V., “Cubic spline wavelets with complementary boundary conditions”, Appl. Math. And Comput., 219 (2012), 1853–1865 | MR | Zbl
[9] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR
[10] Cohen A., Daubechies I., “A new technique to estimate the regularity of refinable functions”, Rev. Math. Iberoamericana, 12:2 (1996), 527–591 | DOI | MR | Zbl
[11] Wang J., “Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation”, Appl. and Computational Harmonic Analysis, 3:2 (1996), 154–163 | DOI | MR | Zbl
[12] Cai W., Wang J., “Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs”, SIAM J. on Numerical Analysis, 33:3 (1996), 937–970 | DOI | MR | Zbl
[13] Kumar V., Mehra M., “Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction diffusion problems”, Int. J. of Wavelets, Multiresolution and Information Processing, 5:2 (2007), 317–331 | DOI | MR | Zbl
[14] Mehra M., Goyal K., “Algorithm 929: A suite on wavelet differentiation algorithms”, ACM Transactions on Mathematical Software, 39:4 (2013), Article number 27 | DOI | MR
[15] Jia R. Q., Liu S. T., “Wavelet bases of Hermite cubic splines on the interval”, Adv. Comput. Math., 25 (2006), 23–39 | DOI | MR | Zbl
[16] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55
[17] Arandiga F., Baeza A., Donat R., “Discrete multiresolution based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl
[18] Ĉerná D., Finêk V., “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. and Comput., 243 (2014), 44–56 | MR | Zbl
[19] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[20] Shumilov B. M., “Kubicheskie multiveivlety, ortogonalnye mnogochlenam, i algoritm s rasschepleniem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 16:3 (2013), 283–301 | MR
[21] Shumilov B. M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 56:7 (2016), 1236–1247 | DOI
[22] Bultheel A., Huybrechs D., Wavelets with Applications in Signal and Image Processing, , 2011, (Ch. 6, p. 6.5: The wavelet crime) http://people.cs.kuleuven.be/adhemar.bultheel/WWW/WAVE/wavelets2011.pdf
[23] Strang G., Nguyen T., Wavelets and Filter Banks, Wellesley-Cambridge Press, Cambridge, 1996 | MR | Zbl