About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 107-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the use of a scalar product with derivatives for constructing semi-orthogonal spline-wavelets. The reduction of supports of such wavelets in comparison with classical semi-orthogonal wavelets is shown. For the splines of the 3rd degree, the algorithm of wavelet-transformation in the form of the solution to a three-diagonal system of the linear equations with strict diagonal prevalence has been obtained. The results of numerical experiments on the calculation of derivatives of a discretely set function are presented.
@article{SJVM_2017_20_1_a8,
     author = {B. M. Shumilov},
     title = {About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {107--120},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 107
EP  - 120
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/
LA  - ru
ID  - SJVM_2017_20_1_a8
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 107-120
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/
%G ru
%F SJVM_2017_20_1_a8
B. M. Shumilov. About semi-orthogonal spline-wavelets with derivatives, and the algorithm with splitting. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 107-120. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a8/

[1] Chui Ch., Vvedenie v veivlety, Per. s angl., Mir, M., 2001

[2] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[3] Lyche T., M\'ørken K., Quak E., “Theory and algorithms for non-uniform spline wavelets”, Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR | Zbl

[4] Cohen A., Daubechies I., Feauveau J. C., “Biorthogonal bases of compactly supported wavelets”, Comm. Pure and Appl. Math., 45 (1992), 485–560 | DOI | MR | Zbl

[5] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl

[6] Bittner K., A new view on biorthogonal spline wavelets, Preprint, Series: 2005-03, Universität Ulm, Ulm, 2005 | MR

[7] Ĉerná D., Finêk V., “Construction of optimally conditioned cubic spline wavelets on the interval”, Adv. Comput. Math., 34 (2011), 219–252 | DOI | MR | Zbl

[8] Ĉerná D., Finêk V., “Cubic spline wavelets with complementary boundary conditions”, Appl. Math. And Comput., 219 (2012), 1853–1865 | MR | Zbl

[9] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR

[10] Cohen A., Daubechies I., “A new technique to estimate the regularity of refinable functions”, Rev. Math. Iberoamericana, 12:2 (1996), 527–591 | DOI | MR | Zbl

[11] Wang J., “Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation”, Appl. and Computational Harmonic Analysis, 3:2 (1996), 154–163 | DOI | MR | Zbl

[12] Cai W., Wang J., “Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs”, SIAM J. on Numerical Analysis, 33:3 (1996), 937–970 | DOI | MR | Zbl

[13] Kumar V., Mehra M., “Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction diffusion problems”, Int. J. of Wavelets, Multiresolution and Information Processing, 5:2 (2007), 317–331 | DOI | MR | Zbl

[14] Mehra M., Goyal K., “Algorithm 929: A suite on wavelet differentiation algorithms”, ACM Transactions on Mathematical Software, 39:4 (2013), Article number 27 | DOI | MR

[15] Jia R. Q., Liu S. T., “Wavelet bases of Hermite cubic splines on the interval”, Adv. Comput. Math., 25 (2006), 23–39 | DOI | MR | Zbl

[16] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55

[17] Arandiga F., Baeza A., Donat R., “Discrete multiresolution based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl

[18] Ĉerná D., Finêk V., “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. and Comput., 243 (2014), 44–56 | MR | Zbl

[19] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[20] Shumilov B. M., “Kubicheskie multiveivlety, ortogonalnye mnogochlenam, i algoritm s rasschepleniem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 16:3 (2013), 283–301 | MR

[21] Shumilov B. M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zhurn. vychisl. matem. i mat. fiziki, 56:7 (2016), 1236–1247 | DOI

[22] Bultheel A., Huybrechs D., Wavelets with Applications in Signal and Image Processing, , 2011, (Ch. 6, p. 6.5: The wavelet crime) http://people.cs.kuleuven.be/adhemar.bultheel/WWW/WAVE/wavelets2011.pdf

[23] Strang G., Nguyen T., Wavelets and Filter Banks, Wellesley-Cambridge Press, Cambridge, 1996 | MR | Zbl