Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem for two elastic bodies pasted together along some curve is considered. There exists a crack on a part of the curve. Nonlinear boundary conditions providing a mutual non-penetration between crack faces are set. The main objective of the paper is to construct and to approve an algorithm for the numerical solution of the equilibrium problem. The algorithm is based on the two approaches: the domain decomposition method and the Uzawa method. The numerical experiment illustrates the efficiency of the algorithm.
@article{SJVM_2017_20_1_a6,
     author = {E. M. Rudoy and N. A. Kazarinov and V. Yu. Slesarenko},
     title = {Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/}
}
TY  - JOUR
AU  - E. M. Rudoy
AU  - N. A. Kazarinov
AU  - V. Yu. Slesarenko
TI  - Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 77
EP  - 90
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/
LA  - ru
ID  - SJVM_2017_20_1_a6
ER  - 
%0 Journal Article
%A E. M. Rudoy
%A N. A. Kazarinov
%A V. Yu. Slesarenko
%T Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 77-90
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/
%G ru
%F SJVM_2017_20_1_a6
E. M. Rudoy; N. A. Kazarinov; V. Yu. Slesarenko. Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/

[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[3] Khludnev A. M., Kozlov V. A., “Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl

[4] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl

[5] Andersson L.-E., Khludnev A. M., “Treschina, vykhodyaschaya na kontaktnuyu granitsu. Metod fiktivnykh oblastei i invariantnye integraly”, Sib. zhurn. industr. matematiki, 11:3 (2008), 15–29 | MR | Zbl

[6] Knees D., Schröder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35 (2012), 1859–1884 | DOI | MR | Zbl

[7] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[8] Rudoy E. M., “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Meth. Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl

[9] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[10] Khludnev A. M., “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl

[11] Khludnev A. M., “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61 (2010), 341–356 | DOI | MR | Zbl

[12] Khludnev A. M., “O ravnovesii dvukhsloinoi uprugoi konstruktsii s treschinoi”, Sib. zhurn. industr. matematiki, 16:2 (2013), 144–153 | MR | Zbl

[13] Rudoi E. M., “Metod dekompozitsii oblasti dlya modelnoi zadachi teorii treschin s vozmozhnym kontaktom beregov”, Zhurn. vychisl. matem. i mat. fiziki, 55:2 (2015), 310–321 | DOI | MR

[14] Rudoy E. M., “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM: M2AN, 50:4 (2016), 995–1009 | DOI | MR | Zbl

[15] Kovtunenko V. A., “Numerical simulation of the non-linear crack problem with nonpenetration”, Math. Meth. Appl. Sci., 27:2 (2004), 163–179 | DOI | MR | Zbl

[16] Hintermuller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. Appl. Math., 69:1 (2004), 1–26 | DOI | MR | Zbl

[17] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi dlya uravneniya Puassona s ogranicheniyami tipa neravenstv v oblasti s razrezom”, Sib. zhurn. industr. matematiki, 8:1 (2005), 41–49 | MR

[18] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi deformirovaniya uprugoplasticheskogo tela s treschinoi pri uslovii vozmozhnogo kontakta beregov”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 9:4 (2006), 335–344 | Zbl

[19] Quarteroni A., Valli A., Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999 | MR | Zbl

[20] Laevskii Yu. M., Matsokin A. M., “Metody dekompozitsii resheniya ellipticheskikh i parabolicheskikh kraevykh zadach”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 2:4 (1999), 361–372 | Zbl

[21] Astrkhantsev G. P., “Metod dekompozitsii oblasti dlya zadachi ob izgibe neodnorodnoi plastiny”, Zhurn. vychisl. matem. i mat. fiziki, 38:10 (1998), 1758–1766 | MR | Zbl

[22] Rukavishnikov A. V., “Metod dekompozitsii oblasti i chislennyi analiz dlya odnoi zadachi gidrodinamiki”, Zhurn. vychisl. matem. i mat. fiziki, 54:9 (2014), 1515–1536 | DOI | MR | Zbl

[23] Bayada G., Sabil J., Sassi T., “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law”, ESAIM: M2AN, 42 (2008), 243–262 | DOI | MR | Zbl

[24] Rudoi E. M., “Chislennoe reshenie zadachi o ravnovesii uprugogo tela s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 19:2 (2016), 74–87 | DOI | MR | Zbl

[25] Ekeland I., Temam R., Convex Analysis and Variational Problems, SIAM, 1999 | MR

[26] Ito K., Kunisch K., Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008 | MR | Zbl

[27] Allaire G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Oxford University Press, 2007 | MR | Zbl

[28] Syarle F., Metod konechnykh elementov dlya matematicheskikh zadach, Mir, M., 1980