Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_1_a6, author = {E. M. Rudoy and N. A. Kazarinov and V. Yu. Slesarenko}, title = {Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {77--90}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/} }
TY - JOUR AU - E. M. Rudoy AU - N. A. Kazarinov AU - V. Yu. Slesarenko TI - Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2017 SP - 77 EP - 90 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/ LA - ru ID - SJVM_2017_20_1_a6 ER -
%0 Journal Article %A E. M. Rudoy %A N. A. Kazarinov %A V. Yu. Slesarenko %T Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2017 %P 77-90 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/ %G ru %F SJVM_2017_20_1_a6
E. M. Rudoy; N. A. Kazarinov; V. Yu. Slesarenko. Numerical simulation of the equilibrium of an elastic two-layer structure with a~crack. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a6/
[1] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[2] Khludnev A. M., Kovtunenko V. A., Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[3] Khludnev A. M., Kozlov V. A., “Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl
[4] Lazarev N. P., Rudoy E. M., “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94:9 (2014), 730–739 | DOI | MR | Zbl
[5] Andersson L.-E., Khludnev A. M., “Treschina, vykhodyaschaya na kontaktnuyu granitsu. Metod fiktivnykh oblastei i invariantnye integraly”, Sib. zhurn. industr. matematiki, 11:3 (2008), 15–29 | MR | Zbl
[6] Knees D., Schröder A., “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Meth. Appl. Sci., 35 (2012), 1859–1884 | DOI | MR | Zbl
[7] Rudoy E. M., “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[8] Rudoy E. M., “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Meth. Appl. Sci., 39:17 (2016), 4994–5006 | DOI | MR | Zbl
[9] Shcherbakov V. V., “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR
[10] Khludnev A. M., “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl
[11] Khludnev A. M., “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61 (2010), 341–356 | DOI | MR | Zbl
[12] Khludnev A. M., “O ravnovesii dvukhsloinoi uprugoi konstruktsii s treschinoi”, Sib. zhurn. industr. matematiki, 16:2 (2013), 144–153 | MR | Zbl
[13] Rudoi E. M., “Metod dekompozitsii oblasti dlya modelnoi zadachi teorii treschin s vozmozhnym kontaktom beregov”, Zhurn. vychisl. matem. i mat. fiziki, 55:2 (2015), 310–321 | DOI | MR
[14] Rudoy E. M., “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM: M2AN, 50:4 (2016), 995–1009 | DOI | MR | Zbl
[15] Kovtunenko V. A., “Numerical simulation of the non-linear crack problem with nonpenetration”, Math. Meth. Appl. Sci., 27:2 (2004), 163–179 | DOI | MR | Zbl
[16] Hintermuller M., Kovtunenko V., Kunisch K., “The primal-dual active set method for a crack problem with non-penetration”, IMA J. Appl. Math., 69:1 (2004), 1–26 | DOI | MR | Zbl
[17] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi dlya uravneniya Puassona s ogranicheniyami tipa neravenstv v oblasti s razrezom”, Sib. zhurn. industr. matematiki, 8:1 (2005), 41–49 | MR
[18] Vtorushin E. V., “Chislennoe issledovanie modelnoi zadachi deformirovaniya uprugoplasticheskogo tela s treschinoi pri uslovii vozmozhnogo kontakta beregov”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 9:4 (2006), 335–344 | Zbl
[19] Quarteroni A., Valli A., Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999 | MR | Zbl
[20] Laevskii Yu. M., Matsokin A. M., “Metody dekompozitsii resheniya ellipticheskikh i parabolicheskikh kraevykh zadach”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 2:4 (1999), 361–372 | Zbl
[21] Astrkhantsev G. P., “Metod dekompozitsii oblasti dlya zadachi ob izgibe neodnorodnoi plastiny”, Zhurn. vychisl. matem. i mat. fiziki, 38:10 (1998), 1758–1766 | MR | Zbl
[22] Rukavishnikov A. V., “Metod dekompozitsii oblasti i chislennyi analiz dlya odnoi zadachi gidrodinamiki”, Zhurn. vychisl. matem. i mat. fiziki, 54:9 (2014), 1515–1536 | DOI | MR | Zbl
[23] Bayada G., Sabil J., Sassi T., “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law”, ESAIM: M2AN, 42 (2008), 243–262 | DOI | MR | Zbl
[24] Rudoi E. M., “Chislennoe reshenie zadachi o ravnovesii uprugogo tela s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 19:2 (2016), 74–87 | DOI | MR | Zbl
[25] Ekeland I., Temam R., Convex Analysis and Variational Problems, SIAM, 1999 | MR
[26] Ito K., Kunisch K., Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008 | MR | Zbl
[27] Allaire G., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Oxford University Press, 2007 | MR | Zbl
[28] Syarle F., Metod konechnykh elementov dlya matematicheskikh zadach, Mir, M., 1980