Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2017_20_1_a3, author = {H. S. Mahato}, title = {Numerical simulations for a~two-scale model in a~porous medium}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {37--46}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/} }
H. S. Mahato. Numerical simulations for a~two-scale model in a~porous medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/
[1] Comsol User's Guide, COMSOL Multiphysics, 2010
[2] Bothe D., Rolland G., “Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities”, Acta Appl. Math., 139 (2015), 25–57 | DOI | MR | Zbl
[3] Mahato H. S., Böhm M., “Global existence and uniqueness for a system of nonlinear multi-species diffusion reaction equations in an $H^{1,p}$ setting”, J. Appl. Anal. and Comput. (JAAC), 3:4 (2013), 357–376 | Zbl
[4] Mahato H. S., Böhm M., “Homogenization of a system of semilinear diffusion-reaction equations in an $H^{1,p}$ setting”, Electron. J. Diff. Equations (EJDE), 210 (2013), 1–22
[5] Marion M., Temam R., “Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows”, J. Math. Pure Appl., 104 (2015), 102–138 | DOI | MR | Zbl
[6] Meirmanov A., Zimin R., “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Diff. Equations (EJDE), 115 (2011), 1–11 | MR
[7] Pierre M., “Global existence in reaction-diffusion systems with control of mass: a survey”, Milan J. of Mathematics, 78:2 (2010), 417–455 | DOI | MR | Zbl
[8] Pruss J., Schnaubelt R., “Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time”, J. Math. Anal. and Appl., 256 (2001), 405–430 | DOI | MR | Zbl
[9] Rubin J., “Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions”, Water Resour. Res., 19:5 (1983), 1231–1252 | DOI