Numerical simulations for a~two-scale model in a~porous medium
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 37-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with numerical simulations of a system of diffusion-reaction equations in the context of a porous medium. We start by giving a microscopic model and then an upscaled version (i.e., homogenized or continuum model) of it from previous works of the author. Since with the help of homogenization we obtain a macroscopic description of a model which is microscopically heterogeneous, via these numerical simulations we show that this macroscopic description approximates the microscopic model, which contains heterogeneities and oscillating terms at the pore scale, such as diffusion coefficients.
@article{SJVM_2017_20_1_a3,
     author = {H. S. Mahato},
     title = {Numerical simulations for a~two-scale model in a~porous medium},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/}
}
TY  - JOUR
AU  - H. S. Mahato
TI  - Numerical simulations for a~two-scale model in a~porous medium
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 37
EP  - 46
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/
LA  - ru
ID  - SJVM_2017_20_1_a3
ER  - 
%0 Journal Article
%A H. S. Mahato
%T Numerical simulations for a~two-scale model in a~porous medium
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 37-46
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/
%G ru
%F SJVM_2017_20_1_a3
H. S. Mahato. Numerical simulations for a~two-scale model in a~porous medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a3/

[1] Comsol User's Guide, COMSOL Multiphysics, 2010

[2] Bothe D., Rolland G., “Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities”, Acta Appl. Math., 139 (2015), 25–57 | DOI | MR | Zbl

[3] Mahato H. S., Böhm M., “Global existence and uniqueness for a system of nonlinear multi-species diffusion reaction equations in an $H^{1,p}$ setting”, J. Appl. Anal. and Comput. (JAAC), 3:4 (2013), 357–376 | Zbl

[4] Mahato H. S., Böhm M., “Homogenization of a system of semilinear diffusion-reaction equations in an $H^{1,p}$ setting”, Electron. J. Diff. Equations (EJDE), 210 (2013), 1–22

[5] Marion M., Temam R., “Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows”, J. Math. Pure Appl., 104 (2015), 102–138 | DOI | MR | Zbl

[6] Meirmanov A., Zimin R., “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Diff. Equations (EJDE), 115 (2011), 1–11 | MR

[7] Pierre M., “Global existence in reaction-diffusion systems with control of mass: a survey”, Milan J. of Mathematics, 78:2 (2010), 417–455 | DOI | MR | Zbl

[8] Pruss J., Schnaubelt R., “Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time”, J. Math. Anal. and Appl., 256 (2001), 405–430 | DOI | MR | Zbl

[9] Rubin J., “Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions”, Water Resour. Res., 19:5 (1983), 1231–1252 | DOI