An approximate solution of the prediction problem for stochastic jump-diffusion systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss the evolution of the new approach to the prediction problem for nonlinear stochastic differential systems with a Poisson component. The proposed approach is based on reducing the prediction problem to the analysis of stochastic jump-diffusion systems with terminating and branching paths. The solution of the prediction problem can be approximately found by using numerical methods for solving stochastic differential equations and methods for modeling inhomogeneous Poisson flows.
@article{SJVM_2017_20_1_a0,
     author = {T. A. Averina and K. A. Rybakov},
     title = {An approximate solution of the prediction problem for stochastic jump-diffusion systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a0/}
}
TY  - JOUR
AU  - T. A. Averina
AU  - K. A. Rybakov
TI  - An approximate solution of the prediction problem for stochastic jump-diffusion systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2017
SP  - 1
EP  - 13
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a0/
LA  - ru
ID  - SJVM_2017_20_1_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%A K. A. Rybakov
%T An approximate solution of the prediction problem for stochastic jump-diffusion systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2017
%P 1-13
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a0/
%G ru
%F SJVM_2017_20_1_a0
T. A. Averina; K. A. Rybakov. An approximate solution of the prediction problem for stochastic jump-diffusion systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 20 (2017) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/SJVM_2017_20_1_a0/

[1] Paraev Yu. I., Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i filtratsii, Sovetskoe radio, M., 1976

[2] Pugachev V. S., Sinitsyn I. N., Teoriya stokhasticheskikh sistem, Logos, M., 2004

[3] Sinitsyn I. N., Filtry Kalmana i Pugacheva, Logos, M., 2007

[4] Rybakov K. A., “Algoritmy prognozirovaniya sostoyanii v stokhasticheskikh differentsialnykh sistemakh na osnove modelirovaniya spetsialnogo vetvyaschegosya protsessa”, Differentsialnye uravneniya i protsessy upravleniya, 2015, no. 1, 25–38 | MR

[5] Rybakov K. A., “Svedenie zadachi nelineinoi filtratsii k zadache analiza stokhasticheskikh sistem s obryvami i vetvleniyami traektorii”, Differentsialnye uravneniya i protsessy upravleniya, 2012, no. 3, 91–110

[6] Rybakov K. A., “Modifitsirovannyi algoritm optimalnoi filtratsii signalov na osnove modelirovaniya spetsialnogo vetvyaschegosya protsessa”, Aviakosmicheskoe priborostroenie, 2013, no. 3, 15–20

[7] Rybakov K. A., “Priblizhennoe reshenie zadachi optimalnoi nelineinoi filtratsii dlya stokhasticheskikh differentsialnykh sistem metodom statisticheskikh ispytanii”, Sib. zhurn. vychisl. matem. (Novosibirsk), 16:4 (2013), 377–391 | MR | Zbl

[8] Panteleev A. V., Rudenko E. A., Bortakovskii A. S., Nelineinye sistemy upravleniya: opisanie, analiz i sintez, Vuzovskaya kniga, M., 2008

[9] Rybakov K. A., “Priblizhennyi metod filtratsii signalov v stokhasticheskikh sistemakh diffuzionno-skachkoobraznogo tipa”, Nauchnyi vestnik MGTU GA, 2014, no. 207, 54–60

[10] Averina T. A., Rybakov K. A., “Dva metoda analiza stokhasticheskikh sistem s puassonovskoi sostavlyayuschei”, Differentsialnye uravneniya i protsessy upravleniya, 2013, no. 3, 85–116

[11] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985

[12] Situ R., Theory of Stochastic Differential Equations with Jumps and Applications, Springer, 2005 | MR | Zbl

[13] Kazakov I. E., Artemev V. M., Bukhalev V. A., Analiz sistem sluchainoi struktury, Fizmatlit, M., 1993

[14] Averina T. A., “Ustoichivye chislennye metody resheniya stokhasticheskikh differentsialnykh uravnenii v smysle Stratonovicha”, Vestnik Buryatskogo gosudarstvennogo universiteta, 2012, no. 9, 91–94

[15] Artemiev S. S., Averina T. A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, VSP, Utrecht, 1997 | MR | Zbl

[16] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya, Izd-vo Politekhnicheskogo universiteta, SPb., 2010

[17] Kloeden P. E., Platen E., Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1995 | MR

[18] Averina T. A., “Novye algoritmy statisticheskogo modelirovaniya neodnorodnykh puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat. fiziki, 50:1 (2010), 16–23 | MR | Zbl

[19] Averina T. A., Mikhailov G. A., “Algoritmy tochnogo i priblizhennogo statisticheskogo modelirovaniya puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat. fiziki, 50:6 (2010), 1005–1016 | MR | Zbl

[20] Mikhailov G. A., Averina T. A., “Algoritm “maksimalnogo secheniya” v metode Monte-Karlo”, Doklady AN, 428:2 (2009), 163–165 | Zbl

[21] Mikhailov G. A., Rogazinskii S. V., “Modifitsirovannyi metod “mazhorantnoi chastoty” dlya chislennogo modelirovaniya obobschennogo eksponentsialnogo raspredeleniya”, Doklady AN, 444:1 (2012), 28–30 | Zbl

[22] Averina T. A., Rybakov K. A., “Dva metoda analiza stokhasticheskikh multistrukturnykh sistem s raspredelennymi perekhodami”, Sib. zhurn. vychisl. matem. (Novosibirsk), 11:1 (2008), 1–18 | Zbl