Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_4_a6, author = {S. B. Sorokin}, title = {A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {429--439}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/} }
TY - JOUR AU - S. B. Sorokin TI - A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 429 EP - 439 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/ LA - ru ID - SJVM_2016_19_4_a6 ER -
%0 Journal Article %A S. B. Sorokin %T A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 429-439 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/ %G ru %F SJVM_2016_19_4_a6
S. B. Sorokin. A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 429-439. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/
[1] Volkov E. A., “Metod setok dlya konechnykh i beskonechnykh oblastei s kusochno-gladkoi granitsei”, Dokl. AN SSSR, 168:5 (1966), 978–981 | Zbl
[2] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 140, 1976, 68–102 | MR | Zbl
[3] Vabischevich P. N., “Adaptivnye setki sostavnogo tipa v zadachakh matematicheskoi fiziki”, Zhurn. vychisl. matem. i mat. fiziki, 29:6 (1989), 902–914 | MR | Zbl
[4] Ewing R. E., Lazarov R. D., Vassilevski P. S., “Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis”, Mathematics of Computation, 56:194 (1991), 437–461 | MR | Zbl
[5] Vasilevskii Yu. V., “Metody resheniya kraevykh zadach s ispolzovaniem nestykuyuschikhsya setok”, Tr. Matematicheskogo tsentra im. N. I. Lobachevskogo, 2, Unipress, Kazan, 1999, 94–121
[6] Chen H., Min C., Gibou F., “A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids”, J. of Scientific Computing, 31 (2007), 19–60 | DOI | MR | Zbl
[7] Kuznetsov Yu., Lipnikov K., Shashkov M., “The mimetic finite difference method on polygonal meshes for diffusion-type problems”, Computational Geosciences, 8:4 (2004), 301–324 | DOI | MR
[8] Konovalov A. N., “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 1:1 (1998), 25–57 | MR | Zbl
[9] da Veiga L. Beirao, Lipnikov K., Manzini G., The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation and Applications, 11, Springer-Verlag, Berlin, 2014 | MR | Zbl
[10] Lipnikov K., Manzinia G., Shashkov M., “Mimetic finite difference method”, J. of Computational Physics, 257 (2014), 1163–1227 | DOI | MR
[11] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., Raznostnye analogi osnovnykh differentsialnykh operatorov pervogo poryadka, Preprint No 8, IPM AN SSSR, Moskva, 1981
[12] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Operatornye raznostnye skhemy”, Diff. uravneniya, 17:7 (1981), 1317–1321 | MR
[13] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, DAN SSSR, 258:5 (1981), 1092–1096 | MR
[14] Samarskii A. A., Tishkin V. F., Favorksii A. P., Shashkov M., “Employment of the reference-operator methods in the construction of finite difference analog of tensor operations”, Differ. Equ., 18:7 (1983), 881–885 | MR
[15] Sorokin S. B., “Obosnovanie diskretnogo analoga sopryazhenno-operatornoi zadachi teploprovodnosti”, Sib. zhurn. industrialnoi matematiki, 17:4 (2014), 98–110 | MR | Zbl