A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 429-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

On non-matching grids discrete analogue conjugate-operator models of heat conduction, keeping the structure of the original model are constructed. Numerical experiments show that the difference scheme converges with second order of accuracy for the case of discontinuous parameters of the medium in the Fourier law and non-uniform grids.
@article{SJVM_2016_19_4_a6,
     author = {S. B. Sorokin},
     title = {A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {429--439},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 429
EP  - 439
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/
LA  - ru
ID  - SJVM_2016_19_4_a6
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 429-439
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/
%G ru
%F SJVM_2016_19_4_a6
S. B. Sorokin. A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 429-439. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a6/

[1] Volkov E. A., “Metod setok dlya konechnykh i beskonechnykh oblastei s kusochno-gladkoi granitsei”, Dokl. AN SSSR, 168:5 (1966), 978–981 | Zbl

[2] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 140, 1976, 68–102 | MR | Zbl

[3] Vabischevich P. N., “Adaptivnye setki sostavnogo tipa v zadachakh matematicheskoi fiziki”, Zhurn. vychisl. matem. i mat. fiziki, 29:6 (1989), 902–914 | MR | Zbl

[4] Ewing R. E., Lazarov R. D., Vassilevski P. S., “Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis”, Mathematics of Computation, 56:194 (1991), 437–461 | MR | Zbl

[5] Vasilevskii Yu. V., “Metody resheniya kraevykh zadach s ispolzovaniem nestykuyuschikhsya setok”, Tr. Matematicheskogo tsentra im. N. I. Lobachevskogo, 2, Unipress, Kazan, 1999, 94–121

[6] Chen H., Min C., Gibou F., “A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids”, J. of Scientific Computing, 31 (2007), 19–60 | DOI | MR | Zbl

[7] Kuznetsov Yu., Lipnikov K., Shashkov M., “The mimetic finite difference method on polygonal meshes for diffusion-type problems”, Computational Geosciences, 8:4 (2004), 301–324 | DOI | MR

[8] Konovalov A. N., “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 1:1 (1998), 25–57 | MR | Zbl

[9] da Veiga L. Beirao, Lipnikov K., Manzini G., The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation and Applications, 11, Springer-Verlag, Berlin, 2014 | MR | Zbl

[10] Lipnikov K., Manzinia G., Shashkov M., “Mimetic finite difference method”, J. of Computational Physics, 257 (2014), 1163–1227 | DOI | MR

[11] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., Raznostnye analogi osnovnykh differentsialnykh operatorov pervogo poryadka, Preprint No 8, IPM AN SSSR, Moskva, 1981

[12] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Operatornye raznostnye skhemy”, Diff. uravneniya, 17:7 (1981), 1317–1321 | MR

[13] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, DAN SSSR, 258:5 (1981), 1092–1096 | MR

[14] Samarskii A. A., Tishkin V. F., Favorksii A. P., Shashkov M., “Employment of the reference-operator methods in the construction of finite difference analog of tensor operations”, Differ. Equ., 18:7 (1983), 881–885 | MR

[15] Sorokin S. B., “Obosnovanie diskretnogo analoga sopryazhenno-operatornoi zadachi teploprovodnosti”, Sib. zhurn. industrialnoi matematiki, 17:4 (2014), 98–110 | MR | Zbl