On iterative methods for solving equations with covering mappings
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 357-369
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we propose an iterative method for solving the equation $\Upsilon(x,x)=y$, where a mapping $\Upsilon$ acts in metric spaces, is covering in the first argument and Lipschitzian in the second one. Each subsequent element $x_{i+1}$ of a sequence of iterations is defined by the previous one as a solution to the equation $\Upsilon(x,x_i)=y_i$, where $y_i$ can be an arbitrary point sufficiently close to $y$. The conditions for convergence and error estimates have been obtained. The method proposed is an iterative development of the Arutyunov method for finding coincidence points of mappings. In order to determine $x_{i+1}$ it is proposed to perform one step using the Newton–Kantorovich method or the practical implementation of the method in linear normed spaces. The obtained method of solving the equation of the form $\Upsilon(x,u)=\psi(x)-\phi(u)$ coincides with the iterative method proposed by A. I. Zinchenko, M. A. Krasnosel'skii, I. A. Kusakin.
@article{SJVM_2016_19_4_a1,
author = {T. V. Zhukovskaia and E. S. Zhukovskiy},
title = {On iterative methods for solving equations with covering mappings},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {357--369},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/}
}
TY - JOUR AU - T. V. Zhukovskaia AU - E. S. Zhukovskiy TI - On iterative methods for solving equations with covering mappings JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 357 EP - 369 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/ LA - ru ID - SJVM_2016_19_4_a1 ER -
T. V. Zhukovskaia; E. S. Zhukovskiy. On iterative methods for solving equations with covering mappings. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 357-369. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/