On iterative methods for solving equations with covering mappings
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 357-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose an iterative method for solving the equation $\Upsilon(x,x)=y$, where a mapping $\Upsilon$ acts in metric spaces, is covering in the first argument and Lipschitzian in the second one. Each subsequent element $x_{i+1}$ of a sequence of iterations is defined by the previous one as a solution to the equation $\Upsilon(x,x_i)=y_i$, where $y_i$ can be an arbitrary point sufficiently close to $y$. The conditions for convergence and error estimates have been obtained. The method proposed is an iterative development of the Arutyunov method for finding coincidence points of mappings. In order to determine $x_{i+1}$ it is proposed to perform one step using the Newton–Kantorovich method or the practical implementation of the method in linear normed spaces. The obtained method of solving the equation of the form $\Upsilon(x,u)=\psi(x)-\phi(u)$ coincides with the iterative method proposed by A. I. Zinchenko, M. A. Krasnosel'skii, I. A. Kusakin.
@article{SJVM_2016_19_4_a1,
     author = {T. V. Zhukovskaia and E. S. Zhukovskiy},
     title = {On iterative methods for solving equations with covering mappings},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {357--369},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/}
}
TY  - JOUR
AU  - T. V. Zhukovskaia
AU  - E. S. Zhukovskiy
TI  - On iterative methods for solving equations with covering mappings
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 357
EP  - 369
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/
LA  - ru
ID  - SJVM_2016_19_4_a1
ER  - 
%0 Journal Article
%A T. V. Zhukovskaia
%A E. S. Zhukovskiy
%T On iterative methods for solving equations with covering mappings
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 357-369
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/
%G ru
%F SJVM_2016_19_4_a1
T. V. Zhukovskaia; E. S. Zhukovskiy. On iterative methods for solving equations with covering mappings. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 357-369. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a1/

[1] Arutyunov A. V., “Iteratsionnyi metod nakhozhdeniya tochek sovpadeniya dvukh otobrazhenii”, Zhurn. vychisl. matem. i mat. fiziki, 52:11 (2012), 1947–1950 | MR | Zbl

[2] Arutyunov A. V., “Tochki sovpadeniya dvukh otobrazhenii”, Funktsionalnyi analiz i ego prilozheniya, 48:1 (2014), 89–93 | DOI | MR | Zbl

[3] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Doklady Akademii nauk, 416:2 (2007), 151–155 | MR | Zbl

[4] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differentsialnye uravneniya, 45:5 (2009), 613–634 | MR | Zbl

[5] Arutyunov A. V., Zhukovskii E. S, Zhukovskii S. E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[7] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[8] Zhukovskaya T. V., Molokanova E. A., “Metod priblizhennogo nakhozhdeniya tochek sovpadeniya nakryvayuschego i lipshitseva otobrazhenii”, Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki, 18:5-2 (2013), 2513–2518