Recovering a~tsunami source and designing an observational system based on the $r$-solution method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 343-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study deals with the application of the $r$-solution method to recover the initial tsunami waveform in a tsunami source area by inverting the remote water-level measurements for a real event. The inverse problem in question is regarded as the so-called ill-posed problem and it is regularized by means of the least square inversion using the truncated Singular Value Decomposition method. The method presented allows one to control the instability of the numerical solution and to obtain an acceptable result in spite of the ill-posedness of the problem. Moreover, it is possible to make a preliminary prediction of the quality of the inversion with a given set of observational stations and to estimate further changes in the inversion result after modifying the monitoring system.
@article{SJVM_2016_19_4_a0,
     author = {T. A. Voronina},
     title = {Recovering a~tsunami source and designing an observational system based on the $r$-solution method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {343--356},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a0/}
}
TY  - JOUR
AU  - T. A. Voronina
TI  - Recovering a~tsunami source and designing an observational system based on the $r$-solution method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 343
EP  - 356
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a0/
LA  - ru
ID  - SJVM_2016_19_4_a0
ER  - 
%0 Journal Article
%A T. A. Voronina
%T Recovering a~tsunami source and designing an observational system based on the $r$-solution method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 343-356
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a0/
%G ru
%F SJVM_2016_19_4_a0
T. A. Voronina. Recovering a~tsunami source and designing an observational system based on the $r$-solution method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 4, pp. 343-356. http://geodesic.mathdoc.fr/item/SJVM_2016_19_4_a0/

[1] Satake K., “Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments”, J. Phys. Earth., 35 (1987), 241–254 | DOI

[2] Satake K., “Inversion of tsunami waveforms for the estimation of heterogeneous fault motion of large submarine earthquakes: the 1968 Tokachi-oki and the 1983 Japan sea earthquake”, J. Geophys. Res., 94 (1989), 5627–5636 | DOI

[3] Tinti S., Piatanesi A., Bortolucci E., “The finite-element wavepropagator approach and the tsunami inversion problem”, J. Phys. Chem. Earth., 12 (1996), 27–32 | DOI

[4] Piatanesi A., Tinti S., Pagnoni G., “Tsunami waveform inversion by numerical finite-elements Green's functions”, Nat. Hazards Earth Syst. Sci., 1 (2001), 187–194 | DOI

[5] Pires C., Miranda P. M. A., “Tsunami waveform inversion by adjoint methods”, J. Geophys. Res., 106 (2001), 19773–19796 | DOI

[6] Titov V. V., Gonzalez F. I., Bernard E. N., Eble M. C., Mofjeld H. O., Newman J. C., Venturato A. J., “Real-time tsunami forecasting: Challenges and solutions/ U.S. National Tsunami Hazard Mitigation Program”, Nat. Hazards, 35:1, Special Issue (2005), 41–58 | DOI

[7] Percival D. B., Denbo D. W., Eble M. C., Gica E., Mofjeld H. O., Spillane M. C., Tang L., Titov V. V., “Extraction of tsunami source coefficients via inversion of DARTR buoy data”, Nat. Hazards, 58:1 (2011), 567–590 | DOI

[8] Enquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 31:139 (1977), 629–654 | DOI | MR

[9] Voronina T. A., Tcheverda V. A., “Reconstruction of tsunami initial form via level oscillation”, Bull. Novosibirsk Comp. Center. Ser. Math. Model. Geoph., 4, Novosibirsk, 1998, 127–136

[10] Cheverda V. A., Kostin V. I., “$r$-pseudoinverse for compact operator”, Siberian Electronic Mathematical Reports, 7 (2010), 258–282

[11] Voronina T. A., “Opredelenie prostranstvennogo raspredeleniya istochnikov kolebanii po distantsionnym izmereniyam v konechnom chisle tochek”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 7:3 (2004), 203–211 | Zbl

[12] Voronina T. A., “Reconstruction of initial tsunami waveforms by a truncated SVD method”, J. Inverse and Ill-posed Problems, 19 (2012), 615–629 | MR

[13] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Novosibirsk, 1983

[14] Voronina T. A., Tcheverda V. A., Voronin V. V., “Some properties of the inverse operator for a tsunami source recovery”, Siberian Electronic Mathematical Reports, 11 (2014), 532–547 | Zbl

[15] Voronin V. V., Voronina T. A., Tcheverda V. A., “Inversion method for initial tsunami waveform reconstruction”, Nat. Hazards Earth Syst. Sci., 15 (2015), 1251–1263 | DOI

[16] Lavrentiev M. M., Romanenko A. A., Lysakov K. F., “Modern computer architecture to speed-up calculation of tsunami wave propagation”, Proc. of the Eleventh Pacific/Asia Offshore Mech. Symp. (October, 12–16, 2014), Shanghai, China, 2014, 186–191