Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_3_a6, author = {A. I. Rozhenko and E. A. Fedorov}, title = {On an algorithm of bilateral restrictions smoothing with spline}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {331--342}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/} }
TY - JOUR AU - A. I. Rozhenko AU - E. A. Fedorov TI - On an algorithm of bilateral restrictions smoothing with spline JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 331 EP - 342 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/ LA - ru ID - SJVM_2016_19_3_a6 ER -
A. I. Rozhenko; E. A. Fedorov. On an algorithm of bilateral restrictions smoothing with spline. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/
[1] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975
[2] Reinsch C. H., “Smoothing by spline functions. II”, Numer. Math., 16:5 (1971), 451–454 | DOI | MR | Zbl
[3] Variational Theory of Splines, Academic/Plenum Publishers, Kluwer, 2001 | MR | Zbl
[4] Rozhenko A. I., “On optimal choice of spline-smoothing parameter”, Bull. of Novosibirsk Computing Center. Series Num. Anal., 7, NCC Publisher, Novosibirsk, 1996, 79–86
[5] Rozhenko A. I., “A new method for finding the optimal smoothing parameter for the abstract smoothing spline”, J. Approx. Theory, 162:6 (2010), 1117–1127 | DOI | MR | Zbl
[6] Mokshin P. V., Rozhenko A. I., “O poiske optimalnogo parametra sglazhivayuschego splaina”, Sibirskii zhurnal industrialnoi matematiki, 18:2(62) (2015), 63–73 | Zbl
[7] Vasilenko V. A., Zyuzin M. V., Kovalkov A. V., Splain-funktsii i tsifrovye filtry, Izd-vo VTs SO AN SSSR, Novosibirsk, 1984 | MR
[8] Kovalkov A. V., “Ob odnom algoritme postroeniya splainov s diskretnymi ogranicheniyami tipa neravenstv”, SERDIKA. B'lgarsko matematichesko spisanie, 9:4 (1983), 417–424 | MR | Zbl
[9] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka, Leningr. otd-nie, L., 1991 | MR
[10] Rozhenko A. I., Teoriya i algoritmy variatsionnoi splain/approksimatsii, Otv. red. A. M. Matsokin, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005
[11] Bazara M., Shetti K., Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1976 | MR
[12] Bezhaev A. Yu., “Reproducing mappings and vector spline-functions”, Sov. J. Numer. Anal. Math. Modelling, 5:2 (1990), 91–109 | DOI | MR | Zbl
[13] Duchon J., “Splines minimizing rotation-invariant seminorms in Sobolev spaces”, Lect. Notes Math., 571, 1977, 85–100 | DOI | MR | Zbl
[14] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Mathematics of Computation, 54 (1990), 211–230 | DOI | MR | Zbl
[15] Volkov Yu. S., Miroshnichenko V. L., “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matem., 1:1 (1998), 77–88 | Zbl
[16] Bogdanov V. V., Karsten W. V., Miroshnichenko V. L., Volkov Yu. S., “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Central European J. Math., 11:4 (2013), 779–786 | MR | Zbl