On an algorithm of bilateral restrictions smoothing with spline
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 331-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the problem of constructing a spline $\sigma$ in the Hilbert space satisfying bilateral restrictions $z^-\le A\sigma\le z^+$ with a linear operator $A$ and minimizing a squared Hilbert seminorm is studied. A solution to this problem could be obtained with the convex programming iterative methods, in particular, with the gradient projection method. A modification of the gradient projection method allowing one to reveal a set of active restrictions in a smaller number of iterations is offered. The efficiency of the modification proposed is shown on the problem of approximation with a pseudo-linear bivariate spline.
@article{SJVM_2016_19_3_a6,
     author = {A. I. Rozhenko and E. A. Fedorov},
     title = {On an algorithm of bilateral restrictions smoothing with spline},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {331--342},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/}
}
TY  - JOUR
AU  - A. I. Rozhenko
AU  - E. A. Fedorov
TI  - On an algorithm of bilateral restrictions smoothing with spline
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 331
EP  - 342
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/
LA  - ru
ID  - SJVM_2016_19_3_a6
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%A E. A. Fedorov
%T On an algorithm of bilateral restrictions smoothing with spline
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 331-342
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/
%G ru
%F SJVM_2016_19_3_a6
A. I. Rozhenko; E. A. Fedorov. On an algorithm of bilateral restrictions smoothing with spline. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/

[1] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[2] Reinsch C. H., “Smoothing by spline functions. II”, Numer. Math., 16:5 (1971), 451–454 | DOI | MR | Zbl

[3] Variational Theory of Splines, Academic/Plenum Publishers, Kluwer, 2001 | MR | Zbl

[4] Rozhenko A. I., “On optimal choice of spline-smoothing parameter”, Bull. of Novosibirsk Computing Center. Series Num. Anal., 7, NCC Publisher, Novosibirsk, 1996, 79–86

[5] Rozhenko A. I., “A new method for finding the optimal smoothing parameter for the abstract smoothing spline”, J. Approx. Theory, 162:6 (2010), 1117–1127 | DOI | MR | Zbl

[6] Mokshin P. V., Rozhenko A. I., “O poiske optimalnogo parametra sglazhivayuschego splaina”, Sibirskii zhurnal industrialnoi matematiki, 18:2(62) (2015), 63–73 | Zbl

[7] Vasilenko V. A., Zyuzin M. V., Kovalkov A. V., Splain-funktsii i tsifrovye filtry, Izd-vo VTs SO AN SSSR, Novosibirsk, 1984 | MR

[8] Kovalkov A. V., “Ob odnom algoritme postroeniya splainov s diskretnymi ogranicheniyami tipa neravenstv”, SERDIKA. B'lgarsko matematichesko spisanie, 9:4 (1983), 417–424 | MR | Zbl

[9] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka, Leningr. otd-nie, L., 1991 | MR

[10] Rozhenko A. I., Teoriya i algoritmy variatsionnoi splain/approksimatsii, Otv. red. A. M. Matsokin, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[11] Bazara M., Shetti K., Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1976 | MR

[12] Bezhaev A. Yu., “Reproducing mappings and vector spline-functions”, Sov. J. Numer. Anal. Math. Modelling, 5:2 (1990), 91–109 | DOI | MR | Zbl

[13] Duchon J., “Splines minimizing rotation-invariant seminorms in Sobolev spaces”, Lect. Notes Math., 571, 1977, 85–100 | DOI | MR | Zbl

[14] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Mathematics of Computation, 54 (1990), 211–230 | DOI | MR | Zbl

[15] Volkov Yu. S., Miroshnichenko V. L., “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matem., 1:1 (1998), 77–88 | Zbl

[16] Bogdanov V. V., Karsten W. V., Miroshnichenko V. L., Volkov Yu. S., “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Central European J. Math., 11:4 (2013), 779–786 | MR | Zbl