On an algorithm of bilateral restrictions smoothing with spline
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 331-342

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the problem of constructing a spline $\sigma$ in the Hilbert space satisfying bilateral restrictions $z^-\le A\sigma\le z^+$ with a linear operator $A$ and minimizing a squared Hilbert seminorm is studied. A solution to this problem could be obtained with the convex programming iterative methods, in particular, with the gradient projection method. A modification of the gradient projection method allowing one to reveal a set of active restrictions in a smaller number of iterations is offered. The efficiency of the modification proposed is shown on the problem of approximation with a pseudo-linear bivariate spline.
@article{SJVM_2016_19_3_a6,
     author = {A. I. Rozhenko and E. A. Fedorov},
     title = {On an algorithm of bilateral restrictions smoothing with spline},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {331--342},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/}
}
TY  - JOUR
AU  - A. I. Rozhenko
AU  - E. A. Fedorov
TI  - On an algorithm of bilateral restrictions smoothing with spline
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 331
EP  - 342
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/
LA  - ru
ID  - SJVM_2016_19_3_a6
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%A E. A. Fedorov
%T On an algorithm of bilateral restrictions smoothing with spline
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 331-342
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/
%G ru
%F SJVM_2016_19_3_a6
A. I. Rozhenko; E. A. Fedorov. On an algorithm of bilateral restrictions smoothing with spline. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a6/