The influence of the shelf zone relief and the coastline geometry on coastal trapped waves
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 297-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of numerical experiments with a model of the coastal trapped waves, which made it possible to identify two features that are important in terms of the regional modeling of the shelf zone interaction with the open ocean. The first feature is the fact that the wave train of this type may be formed as a result of the wind action at a considerable distance from the place where their impact may occur. The propagation of waves along the coastline takes place without significant loss of wave energy, provided that the coastline and topography of the shelf zone contain no features comparable to the Rossby radius. However, the wave loses its energy while passing capes, submarine canyons and in the case when the width of a shelf decreases. For the regional modeling, the possibility of remote wave generation should be well understood and taken into account. The second feature is that a propagating wave is able to spend part of its energy on the formation of density anomalies on a shelf by raising the intermediate waters of the adjoining offshore areas of the open ocean. Thus, the coastal trapped waves carry the wind energy from the areas of the wind impact to other coastal areas, where it can bring about the formation of density anomalies and other types of motion.
@article{SJVM_2016_19_3_a4,
     author = {G. A. Platov},
     title = {The influence of the shelf zone relief and the coastline geometry on coastal trapped waves},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {297--316},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a4/}
}
TY  - JOUR
AU  - G. A. Platov
TI  - The influence of the shelf zone relief and the coastline geometry on coastal trapped waves
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 297
EP  - 316
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a4/
LA  - ru
ID  - SJVM_2016_19_3_a4
ER  - 
%0 Journal Article
%A G. A. Platov
%T The influence of the shelf zone relief and the coastline geometry on coastal trapped waves
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 297-316
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a4/
%G ru
%F SJVM_2016_19_3_a4
G. A. Platov. The influence of the shelf zone relief and the coastline geometry on coastal trapped waves. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 297-316. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a4/

[1] Gill A. E., Clarke A. J., “Wind-induced upwelling, coastal currents, and sea level changes”, Deep-Sea Res., 21 (1974), 325–345

[2] Gill A. E., Schumann E. H., “The generation of long shelf waves by the wind”, J. Phys. Oceanogr., 4 (1974), 83–90 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Allen J. S., “Coastal trapped waves in a stratified ocean”, J. Phys. Oceanogr., 5 (1975), 300–325 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Wang D.-P., Mooers C. N. K., “Coastal-trapped waves in a continuously stratified ocean”, J. Phys. Oceanogr., 6 (1976), 853–863 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Efimov V. V., Kulikov E. A., Rabinovich A. B., Fain I. V., Volny v pogranichnykh oblastyakh okeana, Gidrometeoizdat, L., 1985

[6] Allen J. S., “Continental shelf waves and alongshore variations in bottom topography and coastline”, J. Phys. Oceanogr., 6 (1976), 864–878 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Brink K. H., “Propagation of barotropic continental shelf waves over irregular bottom topography”, J. Phys. Oceanogr., 10 (1980), 765–778 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Middleton J. F., The coastal-trapped wave paddle and open boundary condition, Technical Report No 05/02, Dept. of Applied Math., University of New South Wales, Sydney, Australia, 2005

[9] Dukhovskoy D. S., Morey S. L., O'Brien J. J., “Generation of baroclinic topographic waves by a tropical cyclone impacting a low-latitude continental shelf”, Cont. Shelf Res., 29 (2009), 333–351 | DOI

[10] Blumberg A. F., Mellor G. L., “A description of a three-dimensional coastal ocean circulation model”, Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Series, 4, ed. N. S. Heaps, American Geophysical Union (AGU), Washington, D.C., 1987, 1–16 | DOI

[11] Buchwald V. T., Adams J. K., “The propagation of continental shelf waves”, Proc. Roy. Soc. A London, 305 (1968), 235–250 | DOI | Zbl

[12] Clarke A. J., Gorder S. V., “A method for estimating wind-driven frictional, time-dependent, stratified shelf and slope water flow”, J. Phys. Oceanogr., 16 (1986), 1013–1028 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] Mellor G. L., Yamada T., “Development of a turbulence closure model for geophysical fluid problems”, Rev. Geophys. Space Phys., 20:4 (1982), 851–875 | DOI

[14] Flather R. A., “A numerical investigation of tides and diurnal-period continental shelf waves along Vancouver Island”, J. Phys. Oceanogr., 18 (1988), 115–139 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[15] Jensen T. G., “Open boundary conditions in stratified ocean models”, J. Mar. Syst., 16 (1998), 297–322 | DOI

[16] Platov G. A., “Chislennoe modelirovanie formirovaniya glubinnykh vod Severnogo Ledovitogo okeana. Chast I: idealizirovannye testy”, Izv. RAN. Fizika atmosfery i okeana, 47:3 (2011), 393–408

[17] Chen X., Allen S. E., “The influence of canyons on shelf currents: A theoretical study”, J. Geophys. Res., 101:C8 (1996), 18043–18059 | DOI

[18] Allen S. E., “On subinertial flow in submarine canyons: Effect of geometry”, J. Geophys. Res., 105:C1 (2000), 1285–1297 | DOI