Mathematical study of two-variable systems with adaptive numerical methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 281-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider reaction-diffusion systems arising from two-component predator-prey models with Smith growth functional response. The mathematical approach used here is twofold, since the time-dependent partial differential equations consist of both linear and nonlinear terms. We discretize the stiff or moderately stiff term with a fourth-order difference operator, advance the resulting nonlinear system of ordinary differential equations with a family of two competing exponential time differencing (ETD) schemes, and analyze them for stability. A numerical comparison of these two methods for solving various predator-prey population models with functional responses is also presented. Numerical results show that the techniques require less computational work. Also in the numerical results, some emerging spatial patterns are unveiled.
@article{SJVM_2016_19_3_a3,
     author = {Kolade M. Owolabi},
     title = {Mathematical study of two-variable systems with adaptive numerical methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {281--295},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a3/}
}
TY  - JOUR
AU  - Kolade M. Owolabi
TI  - Mathematical study of two-variable systems with adaptive numerical methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 281
EP  - 295
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a3/
LA  - ru
ID  - SJVM_2016_19_3_a3
ER  - 
%0 Journal Article
%A Kolade M. Owolabi
%T Mathematical study of two-variable systems with adaptive numerical methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 281-295
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a3/
%G ru
%F SJVM_2016_19_3_a3
Kolade M. Owolabi. Mathematical study of two-variable systems with adaptive numerical methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 281-295. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a3/

[1] Allen L. J. S., An Introduction to Mathematical Biology, Pearson Education, Inc., New Jersey, 2007

[2] Bao G., Wei G. W., Zhao S., “Numerical solution of the Helmholtz equation with high wave numbers”, Int. J. of Numerical Methods in Engineering, 59 (2004), 389–408 | DOI | MR | Zbl

[3] Baurmann M., Gross T., Feudel U., “Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations”, J. of Theoretical Biology, 245 (2007), 220–229 | DOI | MR

[4] Beylkin G., Keiser J. M., Vozovoi L., “A new class of time discretization schemes for the solution of nonlinear PDEs”, J. of Computational Physics, 147 (1998), 362–387 | DOI | MR | Zbl

[5] Boukal D. S., Sabelisc M. W., Berec L., “How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses”, Theoretical Population Biology, 72 (2007), 136–147 | DOI | Zbl

[6] Calvo M., Palencia C., “A class of explicit multi-step exponential integrators for semilinear problems”, Numerical Mathematics, 102 (2006), 367–381 | DOI | MR | Zbl

[7] Certaine J., “The solution of ordinary differential equations with large time constants”, Mathematical Methods for Digital Computers, Wiley, New York, 1960, 128–132 | MR

[8] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. of Computational Physics, 176 (2002), 430–455 | DOI | MR | Zbl

[9] Fan M., Wang K., “Periodicity in a food–limited population model with toxicants and time delays”, Acta Mathematicae Applicatae Sinica, 18:2 (2002), 309–314 | DOI | MR

[10] Feng W., Lu X., “On diffusive population models with toxicants and time delays”, J. of Mathematical Analysis and Applications, 233 (1999), 373–386 | DOI | MR | Zbl

[11] Fornberg B., Driscoll T. A., “A fast spectral algorithm for nonlinear wave equations with linear dispersion”, J. of Computational Physics, 155 (1999), 456–467 | DOI | MR | Zbl

[12] Garvie M. R., “Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB”, Bull. of Mathematical Biology, 69 (2007), 931–956 | DOI | MR | Zbl

[13] Grooms I., Julien K., “Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation”, J. of Computational Physics, 230:9 (2011), 3630–3560 | DOI | MR

[14] Hochbruck M., Ostermann A., “Exponential multistep methods of Adams-type”, BIT Numerical Mathematics, 51 (2011), 889–908 | DOI | MR | Zbl

[15] Javanovíc B. S., Suli E., Analysis of Finite Difference Schemes: For Linear Partial Differential Equations With Generalized Solutions, Springer-Verlag, London, 2014 | MR

[16] Kassam A.-K., Trefethen L. N., “Fourth-order time-stepping for stiff PDEs”, SIAM J. on Scientific Computing, 26 (2005), 1214–1233 | DOI | MR | Zbl

[17] Lian X., Yue Y., Wang H., “Pattern formation in a cross-diffusive ratio-dependent predator-prey model”, Discrete Dynamics in Nature and Society, 2012, Article ID 814069, 13 pp. | MR

[18] Lotka A. J., Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925 | Zbl

[19] Murray J. D., Mathematical Biology, v. II, Spatial Models and Biomedical Applications, Springer-Verlag, Berlin, 2003 | MR | Zbl

[20] Owolabi K. M., “Robust numerical solution of the time-dependent problems with blow-up”, Int. J. of Bioinformatics and Biomedical Engineering, 1 (2015), 53–63

[21] Owolabi K. M., Patidar K. C., “Numerical solution of singular patterns in one-dimensional Gray–Scott-like models”, Int. J. of Nonlinear Sciences and Numerical Simulation, 15:7–8 (2014), 437–462 | MR

[22] Owolabi K. M., Patidar K. C., “Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology”, Applied Mathematics and Computation, 240 (2014), 30–50 | DOI | MR | Zbl

[23] Owolabi K. M., Efficient Numerical Methods to Solve Some Reaction-Diffusion Problems Arising in Biology, PhD thesis, University of the Western Cape, 2013

[24] Petrovskii S. V., Morozov A. Y., Venturino E., “Allee effect makes possible patchy invasion in a predator-prey system”, Ecology Letters, 5 (2002), 345–352 | DOI

[25] Smith F. E., “Population dynamics in Daphnia Magna and a new model for population growth”, Ecology, 44 (1963), 651–663 | DOI

[26] Sun G., Jin Z., Liu Q., Li L., “Dynamical complexity of a spatial predator-prey model with migration”, Ecological Modelling, 219 (2008), 248–255 | DOI

[27] Sun G., Zhang G., Jin Z., Li L., “Predator cannibalism can give rise to regular spatial patterns in a predator-prey system”, Nonlinear Dynamics, 58 (2009), 75–84 | DOI | Zbl

[28] Volterra V., “Fluctuations in the abundance of a species considered mathematically”, Nature, 118 (1926), 558–560 | DOI | Zbl

[29] Volterra V., Variations and Fluctuations of the Number of Individuals in Animal Species Living Together, McGraw-Hill, New York, 1926, (Reprinted in R. N. Chapman, Animal Ecology, 1931)

[30] Xue L., “Pattern formation in a predator-prey model with spatial effect”, Physica A, 391 (2012), 5987–5996 | DOI

[31] Yang B., “Pattern formation in a diffusive ratio-dependent Holling–Tanner predator-prey model with Smith growth”, Discrete Dynamics in Nature and Society, 2013 (2013), Article ID 454209, 8 pp. | MR