Using a~randomized method of a~maximum cross-section for simulating random structure systems with distributed transitions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 235-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the random structure systems with distributed transitions. A theorem about the form of conditional structure distributions has been proved. To simulatethese distributions a statistical algorithm using a randomized method of maximum cross-section is constructed. Also, a modified version of this algorithm using the simulation of one random number has been constructed. The algorithms developed were used for the simulation of the numerical solution of random structure systems with distributed transitions. The theorem about a weak convergence of the numerical solution, obtained by the algorithms developed has been proved.
@article{SJVM_2016_19_3_a0,
     author = {T. A. Averina},
     title = {Using a~randomized method of a~maximum cross-section for simulating random structure systems with distributed transitions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a0/}
}
TY  - JOUR
AU  - T. A. Averina
TI  - Using a~randomized method of a~maximum cross-section for simulating random structure systems with distributed transitions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 235
EP  - 247
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a0/
LA  - ru
ID  - SJVM_2016_19_3_a0
ER  - 
%0 Journal Article
%A T. A. Averina
%T Using a~randomized method of a~maximum cross-section for simulating random structure systems with distributed transitions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 235-247
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a0/
%G ru
%F SJVM_2016_19_3_a0
T. A. Averina. Using a~randomized method of a~maximum cross-section for simulating random structure systems with distributed transitions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 3, pp. 235-247. http://geodesic.mathdoc.fr/item/SJVM_2016_19_3_a0/

[1] Kazakov I. E., Artemev V. M., Bukhalev V. A., Analiz sistem sluchainoi struktury, Fizmatlit, M., 1993 | MR

[2] Artemev V. M., Ivanovskii A. V., Upravlenie diskretnymi sistemami so sluchainym periodom kvantovaniya, Energoatomizdat, M., 1986 | MR

[3] Tikhonov V. I., Mironov M. A., Markovskie protsessy, Sovetskoe radio, M., 1977 | MR

[4] Mikhailov G. A., Averina T. A., “Algoritm “maksimalnogo secheniya” v metode Monte-Karlo”, DAN, 428:2 (2009), 163–165 | MR | Zbl

[5] Averina T. A., “Metody statisticheskogo modelirovaniya neodnorodnogo puassonovskogo ansamblya”, Sib. zhurn. vychisl. matem. (Novosibirsk), 12:4 (2009), 361–374 | Zbl

[6] Averina T. A., “Novye algoritmy statisticheskogo modelirovaniya neodnorodnykh puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat. fiziki, 50:1 (2010), 16–23 | MR | Zbl

[7] Averina T. A., Mikhailov G. A., “Algoritmy tochnogo i priblizhennogo statisticheskogo modelirovaniya puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat. fiziki, 50:6 (2010), 1005–1016 | MR | Zbl

[8] Coleman W. A., “Mathematical verification of a certain Monte Carlo sampling technique and applications of the techniques to radiation transport problems”, J. Nucl. Sci. and Eng., 32:1 (1968), 76–81 | DOI

[9] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[10] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006

[11] Belyaev Yu. K., “Puassonovskii tochechnyi protsess”, Veroyatnost i matematicheskaya statistika, Entsiklopediya, Nauchnoe izd-vo, M., 1999, 525–526

[12] Averina T. A., Rybakov K. A., “Dva metoda analiza stokhasticheskikh multistrukturnykh sistem s raspredelennymi perekhodami”, Sib. zhurn. vychisl. matem. (Novosibirsk), 11:1 (2008), 1–18 | Zbl

[13] Mikhailov G. A., Rogazinskii S. V., “Modifitsirovannyi metod “mazhorantnoi chastoty” dlya chislennogo modelirovaniya obobschennogo eksponentsialnogo raspredeleniya”, DAN, 444:1 (2013), 28–30 | MR

[14] Mikhailov G. A., “K voprosu o postroenii ekonomichnykh algoritmov modelirovaniya sluchainykh velichin”, Zhurn. vychisl. matem. i mat. fiziki, 6:6 (1966), 1134–1136 | MR | Zbl

[15] Averina T. A., Artemev S. S., “Novoe semeistvo chislennykh metodov resheniya stokhasticheskikh differentsialnykh uravnenii”, Dokl. AN SSSR, 288:4 (1986), 777–780 | MR | Zbl

[16] Artemiev S. S., Averina T. A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, VSP, Utrecht, The Netherland, 1997 | MR | Zbl

[17] Averina T. A., “Ustoichivye chislennye metody resheniya stokhasticheskikh differentsialnykh uravnenii v smysle Stratonovicha”, Vestnik Buryatskogo gosudarstvennogo universiteta, 2012, no. 9, 91–94

[18] Kosachev I. M., “Matematicheskaya model protsessa samonavedeniya protivoradiolokatsionnoi rakety HARM na ZRK, osnaschennyi sredstvami radiolokatsionnoi zaschity tipa ‘Dubler’ ”, Vestnik Voennoi akademii Respubliki Belarus, 2012, no. 2(35), 39–51