About an approximate solution to the Fredholm integral equation of the first kind by the residual method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 97-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tikhonov finite-dimensional approximation was applied to an integral equation of the first kind. This allowed us to use the variation regularization method of choosing the regularization parameter residuals from the principle of reducing the problem to a system of linear algebraic equations. The estimate of accuracy of the approximate solution with allowance for the error of the finite-dimensional problem approximation has been obtained. The use of this approach is illustrated on an example of solving an inverse boundary value problem for the heat conductivity equation.
@article{SJVM_2016_19_1_a9,
     author = {V. P. Tanana and E. Y. Vishnyakov and A. I. Sidikova},
     title = {About an approximate solution to the {Fredholm} integral equation of the first kind by the residual method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {97--105},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - E. Y. Vishnyakov
AU  - A. I. Sidikova
TI  - About an approximate solution to the Fredholm integral equation of the first kind by the residual method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 97
EP  - 105
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/
LA  - ru
ID  - SJVM_2016_19_1_a9
ER  - 
%0 Journal Article
%A V. P. Tanana
%A E. Y. Vishnyakov
%A A. I. Sidikova
%T About an approximate solution to the Fredholm integral equation of the first kind by the residual method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 97-105
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/
%G ru
%F SJVM_2016_19_1_a9
V. P. Tanana; E. Y. Vishnyakov; A. I. Sidikova. About an approximate solution to the Fredholm integral equation of the first kind by the residual method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/

[1] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebnik dlya studentov vysshikh uchebnykh zavedeniy, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009

[2] Morozov V. A., “O regulyarizatsii nekorrektno postavlennykh zadach i vybore parametra regulyarizatsii”, ZHurn. vychisl. matem. i mat. fiziki, 6:1 (1966), 170–175 | MR | Zbl

[3] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl

[4] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravneniy metodom regulyarizatsii”, ZHurn. vychisl. matem. i mat. fiziki, 8:2 (1968), 295–309 | MR | Zbl

[5] Ivanov V. K., “O priblizhennom reshenii operatornogo uravneniya pervogo roda”, ZHurn. vychisl. matem. i mat. fiziki, 6:6 (1966), 1089–1094 | MR | Zbl

[6] Goncharskiy A. V., Leonov A. S., YAgola A. G., “Konechnoraznostnaya approksimatsiya lineynykh nekorrektnykh zadach”, ZHurn. vychisl. matem. i mat. fiziki, 14:4 (1974), 1022–1027 | MR | Zbl

[7] Vasin V. V., Tanana V. P., “Neobkhodimye i dostatochnye usloviya skhodimosti proektsionnykh metodov dlya lineynykh neustoychivykh zadach”, Dokl. AN SSSR, 215:5 (1974), 1032–1034 | MR | Zbl

[8] Tanana V. P., “Proektsionnye metody i konechnoraznostnaya approksimatsiya lineynykh nekorrektnykh zadach”, Sib. matem. zhurn., 16:6 (1975), 1301–1307 | MR | Zbl

[9] Vasin V. V., “Diskretnaya skhodimost' i konechnomernaya approksimatsiya regulyarizuyushchikh algoritmov”, Zhurn. vychisl. matem. i mat. fiziki, 19:1 (1979), 11–21 | MR | Zbl

[10] Tanana V. P., Sidikova A. I., “Ob otsenke pogreshnosti regulyarizuyushchego algoritma, osnovannogo na obobshchennom printsipe nevyazki, pri reshenii integral'nykh uravneniy”, ZHurn. vychisl. metody i program., 16:1 (2015), 1–9

[11] Tanana V. P., “Ob optimal'nosti metodov resheniya nelineynykh neustoychivykh zadach”, Dokl. AN SSSR, 220:5 (1975), 1035–1037 | MR | Zbl

[12] Tanana V. P., “Ob optimal'nosti po poryadku metoda proektsionnoy regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | MR | Zbl