Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a9, author = {V. P. Tanana and E. Y. Vishnyakov and A. I. Sidikova}, title = {About an approximate solution to the {Fredholm} integral equation of the first kind by the residual method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {97--105}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/} }
TY - JOUR AU - V. P. Tanana AU - E. Y. Vishnyakov AU - A. I. Sidikova TI - About an approximate solution to the Fredholm integral equation of the first kind by the residual method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 97 EP - 105 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/ LA - ru ID - SJVM_2016_19_1_a9 ER -
%0 Journal Article %A V. P. Tanana %A E. Y. Vishnyakov %A A. I. Sidikova %T About an approximate solution to the Fredholm integral equation of the first kind by the residual method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 97-105 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/ %G ru %F SJVM_2016_19_1_a9
V. P. Tanana; E. Y. Vishnyakov; A. I. Sidikova. About an approximate solution to the Fredholm integral equation of the first kind by the residual method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a9/
[1] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebnik dlya studentov vysshikh uchebnykh zavedeniy, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009
[2] Morozov V. A., “O regulyarizatsii nekorrektno postavlennykh zadach i vybore parametra regulyarizatsii”, ZHurn. vychisl. matem. i mat. fiziki, 6:1 (1966), 170–175 | MR | Zbl
[3] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl
[4] Morozov V. A., “O printsipe nevyazki pri reshenii operatornykh uravneniy metodom regulyarizatsii”, ZHurn. vychisl. matem. i mat. fiziki, 8:2 (1968), 295–309 | MR | Zbl
[5] Ivanov V. K., “O priblizhennom reshenii operatornogo uravneniya pervogo roda”, ZHurn. vychisl. matem. i mat. fiziki, 6:6 (1966), 1089–1094 | MR | Zbl
[6] Goncharskiy A. V., Leonov A. S., YAgola A. G., “Konechnoraznostnaya approksimatsiya lineynykh nekorrektnykh zadach”, ZHurn. vychisl. matem. i mat. fiziki, 14:4 (1974), 1022–1027 | MR | Zbl
[7] Vasin V. V., Tanana V. P., “Neobkhodimye i dostatochnye usloviya skhodimosti proektsionnykh metodov dlya lineynykh neustoychivykh zadach”, Dokl. AN SSSR, 215:5 (1974), 1032–1034 | MR | Zbl
[8] Tanana V. P., “Proektsionnye metody i konechnoraznostnaya approksimatsiya lineynykh nekorrektnykh zadach”, Sib. matem. zhurn., 16:6 (1975), 1301–1307 | MR | Zbl
[9] Vasin V. V., “Diskretnaya skhodimost' i konechnomernaya approksimatsiya regulyarizuyushchikh algoritmov”, Zhurn. vychisl. matem. i mat. fiziki, 19:1 (1979), 11–21 | MR | Zbl
[10] Tanana V. P., Sidikova A. I., “Ob otsenke pogreshnosti regulyarizuyushchego algoritma, osnovannogo na obobshchennom printsipe nevyazki, pri reshenii integral'nykh uravneniy”, ZHurn. vychisl. metody i program., 16:1 (2015), 1–9
[11] Tanana V. P., “Ob optimal'nosti metodov resheniya nelineynykh neustoychivykh zadach”, Dokl. AN SSSR, 220:5 (1975), 1035–1037 | MR | Zbl
[12] Tanana V. P., “Ob optimal'nosti po poryadku metoda proektsionnoy regulyarizatsii pri reshenii obratnykh zadach”, Sib. zhurn. industr. matem., 7:2 (2004), 117–132 | MR | Zbl