Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a8, author = {P. Singh and M. K. Kadalbajoo and K. Sharma}, title = {Probability density function of leaky integrate-and-fire model with {L\'evy} noise and its numerical approximation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {87--96}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/} }
TY - JOUR AU - P. Singh AU - M. K. Kadalbajoo AU - K. Sharma TI - Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 87 EP - 96 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/ LA - ru ID - SJVM_2016_19_1_a8 ER -
%0 Journal Article %A P. Singh %A M. K. Kadalbajoo %A K. Sharma %T Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 87-96 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/ %G ru %F SJVM_2016_19_1_a8
P. Singh; M. K. Kadalbajoo; K. Sharma. Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/
[1] Lapicque L., “Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization”, J. Physiol. Pathol. Generale, 9 (1907), 620–635 | Zbl
[2] Koch C., Segev I., Methods in Neuronal Modeling: From Ions to Networks, second edition, MIT Press, Cambridge, Massachusetts, 1998
[3] Burkitt A. N., “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input”, Biol. Cybern., 95:1 (2006), 1–19 | DOI | MR | Zbl
[4] Rall W., The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries, MIT Press, Boston, 1995
[5] Tuckwell H. C., Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988 | Zbl
[6] Brunel N., Hakim V., “Fast global oscillations in networks of integrate-and-fire neurons with low firing rates”, Neural Comput., 11 (1999), 1621–1671 | DOI
[7] Doiron B. M., Chacron M. J., Maler L., Longtin A., Bastian J., “Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli”, Nature, 421:6922 (2003), 539–543 | DOI
[8] Mattia M., Del Giudice P., “Finite-size dynamics of inhibitory and excitatory interacting spiking neurons”, Phys. Rev. E, 70:5 (2004), 052903, 4 pp. | DOI | MR
[9] Tuckwell H. C., Stochastic Processes in the Neurosciences, SIAM, Philadelphia, 1989 | MR
[10] Brunel N., Chance F. S., Fourcaud N., Abbott L. F., “Effects of synaptic noise and filtering on the frequency response of spiking neurons”, Phys. Rev. Lett., 86 (2001), 2186–2189 | DOI
[11] Lindner B., Schimansky-Geier L., “Transmission of noise coded versus additive signals through a neuronal ensemble”, Phys. Rev. Lett., 86 (2001), 2934–2937 | DOI
[12] Pakdaman K., “Perodically forced leaky integrate-and-fire model”, Phys. Rev. E, 63:4 (2001), 041907 | DOI | MR
[13] Pakdaman K., Perthame B., Salort D., “Dynamics of a structured neuron population”, Nonlinearity, 23:1 (2010), 55–75 | DOI | MR | Zbl
[14] Pham J., Pakdaman K., Champagnat J., Vibert J.-F., “Activity in sparsely connected excitatory neural networks: effect of connectivity”, Neural Networks, 11:3 (1998), 415–434 | DOI
[15] Pham J., Pakdaman K., Vibert J.-F., “Noise-induced coherent oscillations in randomly connected neural networks”, Phys. Rev. E, 8:3 (1998), 3610–3622 | DOI
[16] Kadalbajoo M. K., Sharma K. K., “Numerical treatment of a mathematical model arising from a model of neuronal variability”, J. Math. Anal. Appl., 307:2 (2005), 606–627 | DOI | MR | Zbl
[17] Kadalbajoo M. K., Sharma K. K., “An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential-difference equations: small shifts of mixed type with layer behavior”, J. Comput. Anal. Appl., 8:2 (2006), 151–171 | MR | Zbl
[18] LeVeque R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH, Zürich, Birkhäuser, Basel, 1999 | MR
[19] Morton K. W., Mayers D. F., Numerical Solution of Partial Differential Equations, second edition, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[20] LeVeque R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[21] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin–Heidelberg, 1999 | MR | Zbl
[22] Doolan E. P., Miller J. J. H., Schilders W. H. A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980 | MR | Zbl