Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a numerical analysis of a leaky integrate-and-fire model with Lévy noise. We consider a neuron model in which the probability density function of a neuron in some potential at any time is modeled by a transport equation. Lévy noise is included due to jumps by excitatory and inhibitory impulses. Due to these jumps the resulting equation is a transport equation containing two integrals in the right-hand side (jumps). We design, implement, and analyze numerical methods of finite volume type. Some numerical examples are also included.
@article{SJVM_2016_19_1_a8,
     author = {P. Singh and M. K. Kadalbajoo and K. Sharma},
     title = {Probability density function of leaky integrate-and-fire model with {L\'evy} noise and its numerical approximation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/}
}
TY  - JOUR
AU  - P. Singh
AU  - M. K. Kadalbajoo
AU  - K. Sharma
TI  - Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 87
EP  - 96
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/
LA  - ru
ID  - SJVM_2016_19_1_a8
ER  - 
%0 Journal Article
%A P. Singh
%A M. K. Kadalbajoo
%A K. Sharma
%T Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 87-96
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/
%G ru
%F SJVM_2016_19_1_a8
P. Singh; M. K. Kadalbajoo; K. Sharma. Probability density function of leaky integrate-and-fire model with L\'evy noise and its numerical approximation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a8/

[1] Lapicque L., “Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization”, J. Physiol. Pathol. Generale, 9 (1907), 620–635 | Zbl

[2] Koch C., Segev I., Methods in Neuronal Modeling: From Ions to Networks, second edition, MIT Press, Cambridge, Massachusetts, 1998

[3] Burkitt A. N., “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input”, Biol. Cybern., 95:1 (2006), 1–19 | DOI | MR | Zbl

[4] Rall W., The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries, MIT Press, Boston, 1995

[5] Tuckwell H. C., Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988 | Zbl

[6] Brunel N., Hakim V., “Fast global oscillations in networks of integrate-and-fire neurons with low firing rates”, Neural Comput., 11 (1999), 1621–1671 | DOI

[7] Doiron B. M., Chacron M. J., Maler L., Longtin A., Bastian J., “Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli”, Nature, 421:6922 (2003), 539–543 | DOI

[8] Mattia M., Del Giudice P., “Finite-size dynamics of inhibitory and excitatory interacting spiking neurons”, Phys. Rev. E, 70:5 (2004), 052903, 4 pp. | DOI | MR

[9] Tuckwell H. C., Stochastic Processes in the Neurosciences, SIAM, Philadelphia, 1989 | MR

[10] Brunel N., Chance F. S., Fourcaud N., Abbott L. F., “Effects of synaptic noise and filtering on the frequency response of spiking neurons”, Phys. Rev. Lett., 86 (2001), 2186–2189 | DOI

[11] Lindner B., Schimansky-Geier L., “Transmission of noise coded versus additive signals through a neuronal ensemble”, Phys. Rev. Lett., 86 (2001), 2934–2937 | DOI

[12] Pakdaman K., “Perodically forced leaky integrate-and-fire model”, Phys. Rev. E, 63:4 (2001), 041907 | DOI | MR

[13] Pakdaman K., Perthame B., Salort D., “Dynamics of a structured neuron population”, Nonlinearity, 23:1 (2010), 55–75 | DOI | MR | Zbl

[14] Pham J., Pakdaman K., Champagnat J., Vibert J.-F., “Activity in sparsely connected excitatory neural networks: effect of connectivity”, Neural Networks, 11:3 (1998), 415–434 | DOI

[15] Pham J., Pakdaman K., Vibert J.-F., “Noise-induced coherent oscillations in randomly connected neural networks”, Phys. Rev. E, 8:3 (1998), 3610–3622 | DOI

[16] Kadalbajoo M. K., Sharma K. K., “Numerical treatment of a mathematical model arising from a model of neuronal variability”, J. Math. Anal. Appl., 307:2 (2005), 606–627 | DOI | MR | Zbl

[17] Kadalbajoo M. K., Sharma K. K., “An exponentially fitted finite difference scheme for solving boundary-value problems for singularly-perturbed differential-difference equations: small shifts of mixed type with layer behavior”, J. Comput. Anal. Appl., 8:2 (2006), 151–171 | MR | Zbl

[18] LeVeque R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH, Zürich, Birkhäuser, Basel, 1999 | MR

[19] Morton K. W., Mayers D. F., Numerical Solution of Partial Differential Equations, second edition, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[20] LeVeque R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[21] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin–Heidelberg, 1999 | MR | Zbl

[22] Doolan E. P., Miller J. J. H., Schilders W. H. A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980 | MR | Zbl