The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative product, that is, the triangular skew-symmetric method (PTSM) is used to solve linear algebraic equation systems obtained by approximation of a central-difference scheme of the first boundary value problem of convection-diffusion-reaction and standard grid ordering. Sufficient conditions of a non-negative definiteness of the matrix resulting from this approximation have been obtained for a non-stationary sign of the reaction coefficient. This feature ensures the convergence of a sufficiently wide class of iterative methods, in particular, the PTSM. In the test problems, the compliance of the theory with computational experiments is verified, and comparison of the PTSM and the SSOR is made.
@article{SJVM_2016_19_1_a7,
     author = {L. A. Krukier and B. L. Krukier and Yu-Mei Huang},
     title = {The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - B. L. Krukier
AU  - Yu-Mei Huang
TI  - The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 75
EP  - 85
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/
LA  - ru
ID  - SJVM_2016_19_1_a7
ER  - 
%0 Journal Article
%A L. A. Krukier
%A B. L. Krukier
%A Yu-Mei Huang
%T The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 75-85
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/
%G ru
%F SJVM_2016_19_1_a7
L. A. Krukier; B. L. Krukier; Yu-Mei Huang. The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/

[1] Vabishchevich P. N., Vasil'eva M. V., “Yavno-neyavnye skhemy dlya zadach konvektsii-diffuzii-reaktsii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:4 (2012), 359–369

[2] Vinogradova S. A., Krukier L. A., “Ispol'zovanie metoda nepolnogo LU-razlozheniya pri modelirovanii konvektivno-diffuzionnykh protsessov v anizotropnoy srede”, Matematicheskoe modelirovanie, 24:9 (2012), 125–136 | MR | Zbl

[3] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[5] Krukier L. A., Martynova T. S., “Vliyanie formy zapisi uravneniya konvektsii-diffuzii na skhodimost' metoda verkhney relaksatsii”, ZhVM i MF, 39:11 (1999), 1821–1827 | MR | Zbl

[6] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyy metod ikh resheniya dlya odnogo klassa sistem kvazilineynykh uravneniy”, Izv. VUZov. Matematika, 1979, no. 7, 41–52 | MR | Zbl

[7] Marchuk G. I., Chislennye metody i prognoz pogody, Gidrometeoizdat, L., 1967

[8] Marchuk G. I., Metody vychislitel'noy matematiki, Nauka, Novosibirsk, 1973

[9] Samarskiy A. A., Nikolaev E. S., Metody resheniya setochnykh uravneniy, Nauka, M., 1978 | MR

[10] Samarskiy A. A., Vabishchevich P. N., Chislennye metody resheniya zadach konvektsiidiffuzii, Editorial URSS, M., 1999

[11] Shishkin G. I., “Pervaya kraevaya zadacha dlya uravneniya vtorogo poryadka s malymi parametrami pri proizvodnykh”, Diff. uravneniya, 13:2 (1977), 376–378 | MR | Zbl

[12] Botchev M. A., Krukier L. A., “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, J. Comp. Math. Math. Physics, 37:11 (1997), 1241–1251 | MR

[13] Elman H. C., “Relaxed and stabilized incomplete factorizations for nonself-adjoint linear systems”, BIT (Dan.), 29:4 (1989), 890–915 | DOI | MR | Zbl

[14] Elman H. C., Golub G. H., “Line iterative methods for cyclically reduced discrete convection-diffusion problems”, SIAM J. Sci. Stat. Comput., 13:1 (1992), 339–363 | DOI | MR | Zbl

[15] Johnson C. R., Krukier L. A., “General resolution of a convergence question of L. Krukier”, Numerical Linear Algebra with Applications, 16:11 (2009), 949–950 | DOI | MR | Zbl

[16] Krukier L. A., “Convergence acceleration of triangular iterative methods based on the skew-symmetric part of the matrix”, Appl. Numer. Math., 30 (1999), 281–290 | DOI | MR | Zbl

[17] Krukier B. L., Krukier L. A., “Using the skew-symmetric iterative methods for solution of an indefinite nonsymmetric linear systems”, J. Comp. Math., 32:3 (2014), 266–271 | DOI | MR | Zbl

[18] Krukier L. A., Pichugina O. A., Krukier B. L., “Numerical solution of the steady convection-diffusion equation with dominant convection”, Procedia Computer Science, 18 (2013), 2095–2100 | DOI

[19] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 41 (2002), 89–105 | DOI | MR | Zbl

[20] Krukier L. A., Martinova T. S., Bai Z. Z., “Product-type skew-hermitian triangular splitting iteration methods for strongly non-hermitian positive definite linear systems”, J. Comput. and Appl. Math., 232:1 (2009), 3–16 | DOI | MR | Zbl

[21] Meurant G., Computer Solutions of Large Linear Systems, Elsevier Science, Amsterdam, 1999 | MR

[22] Morton K. W., Numerical Solution of Convection-Diffusion Problems, Chapman and Hall, NY, 1996 | MR | Zbl

[23] Zhang J., “Preconditioned iterative methods and finite difference schemes for convection-diffusion”, Appl. Math. Comp., 109 (2000), 11–30 | DOI | MR | Zbl