Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a7, author = {L. A. Krukier and B. L. Krukier and Yu-Mei Huang}, title = {The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {75--85}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/} }
TY - JOUR AU - L. A. Krukier AU - B. L. Krukier AU - Yu-Mei Huang TI - The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 75 EP - 85 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/ LA - ru ID - SJVM_2016_19_1_a7 ER -
%0 Journal Article %A L. A. Krukier %A B. L. Krukier %A Yu-Mei Huang %T The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 75-85 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/ %G ru %F SJVM_2016_19_1_a7
L. A. Krukier; B. L. Krukier; Yu-Mei Huang. The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a7/
[1] Vabishchevich P. N., Vasil'eva M. V., “Yavno-neyavnye skhemy dlya zadach konvektsii-diffuzii-reaktsii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:4 (2012), 359–369
[2] Vinogradova S. A., Krukier L. A., “Ispol'zovanie metoda nepolnogo LU-razlozheniya pri modelirovanii konvektivno-diffuzionnykh protsessov v anizotropnoy srede”, Matematicheskoe modelirovanie, 24:9 (2012), 125–136 | MR | Zbl
[3] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR
[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[5] Krukier L. A., Martynova T. S., “Vliyanie formy zapisi uravneniya konvektsii-diffuzii na skhodimost' metoda verkhney relaksatsii”, ZhVM i MF, 39:11 (1999), 1821–1827 | MR | Zbl
[6] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyy metod ikh resheniya dlya odnogo klassa sistem kvazilineynykh uravneniy”, Izv. VUZov. Matematika, 1979, no. 7, 41–52 | MR | Zbl
[7] Marchuk G. I., Chislennye metody i prognoz pogody, Gidrometeoizdat, L., 1967
[8] Marchuk G. I., Metody vychislitel'noy matematiki, Nauka, Novosibirsk, 1973
[9] Samarskiy A. A., Nikolaev E. S., Metody resheniya setochnykh uravneniy, Nauka, M., 1978 | MR
[10] Samarskiy A. A., Vabishchevich P. N., Chislennye metody resheniya zadach konvektsiidiffuzii, Editorial URSS, M., 1999
[11] Shishkin G. I., “Pervaya kraevaya zadacha dlya uravneniya vtorogo poryadka s malymi parametrami pri proizvodnykh”, Diff. uravneniya, 13:2 (1977), 376–378 | MR | Zbl
[12] Botchev M. A., Krukier L. A., “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, J. Comp. Math. Math. Physics, 37:11 (1997), 1241–1251 | MR
[13] Elman H. C., “Relaxed and stabilized incomplete factorizations for nonself-adjoint linear systems”, BIT (Dan.), 29:4 (1989), 890–915 | DOI | MR | Zbl
[14] Elman H. C., Golub G. H., “Line iterative methods for cyclically reduced discrete convection-diffusion problems”, SIAM J. Sci. Stat. Comput., 13:1 (1992), 339–363 | DOI | MR | Zbl
[15] Johnson C. R., Krukier L. A., “General resolution of a convergence question of L. Krukier”, Numerical Linear Algebra with Applications, 16:11 (2009), 949–950 | DOI | MR | Zbl
[16] Krukier L. A., “Convergence acceleration of triangular iterative methods based on the skew-symmetric part of the matrix”, Appl. Numer. Math., 30 (1999), 281–290 | DOI | MR | Zbl
[17] Krukier B. L., Krukier L. A., “Using the skew-symmetric iterative methods for solution of an indefinite nonsymmetric linear systems”, J. Comp. Math., 32:3 (2014), 266–271 | DOI | MR | Zbl
[18] Krukier L. A., Pichugina O. A., Krukier B. L., “Numerical solution of the steady convection-diffusion equation with dominant convection”, Procedia Computer Science, 18 (2013), 2095–2100 | DOI
[19] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 41 (2002), 89–105 | DOI | MR | Zbl
[20] Krukier L. A., Martinova T. S., Bai Z. Z., “Product-type skew-hermitian triangular splitting iteration methods for strongly non-hermitian positive definite linear systems”, J. Comput. and Appl. Math., 232:1 (2009), 3–16 | DOI | MR | Zbl
[21] Meurant G., Computer Solutions of Large Linear Systems, Elsevier Science, Amsterdam, 1999 | MR
[22] Morton K. W., Numerical Solution of Convection-Diffusion Problems, Chapman and Hall, NY, 1996 | MR | Zbl
[23] Zhang J., “Preconditioned iterative methods and finite difference schemes for convection-diffusion”, Appl. Math. Comp., 109 (2000), 11–30 | DOI | MR | Zbl