Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new algorithms of statistical modeling of radiative transfer through different types of stochastic homogeneous isotropic media have been created. To this end a special geometric implementation of “the maximum cross-section method” has been developed. This implementation allows one to take into account the radiation absorption by the exponential multiplier factor. The dependence of a certain class of solution functionals of the radiative transfer equation on the correlation length and the field type is studied theoretically and by means of numerical experiments. The theorem about the convergence of these functionals to the corresponding functionals for an average field with decreasing the correlation length up to zero has been proved.
@article{SJVM_2016_19_1_a3,
     author = {A. Yu. Ambos},
     title = {Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/}
}
TY  - JOUR
AU  - A. Yu. Ambos
TI  - Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2016
SP  - 19
EP  - 32
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/
LA  - ru
ID  - SJVM_2016_19_1_a3
ER  - 
%0 Journal Article
%A A. Yu. Ambos
%T Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2016
%P 19-32
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/
%G ru
%F SJVM_2016_19_1_a3
A. Yu. Ambos. Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/

[1] Averina T. A., Mikhailov G. A., “Algorithms for exact and approximate statistical simulation of Poisson ensembles”, Computational Mathematics and Mathematical Physics, 50:6 (2010), 951–962 | DOI | MR | Zbl

[2] Zuev V. E., Titov G. A., Optika atmosfery i klimat, v. 9, Izd-vo “Spektr” IOA SO RAN, Tomsk, 1996

[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[4] Marchuk G. I., Mikhaylov G. A., Nazaraliev M. A. i dr., Metody Monte-Karlo v atmosfernoy optike, Nauka, Novosibirsk, 1976

[5] Mikhailov G. A., “Asymptotic estimates of the mean probability of radiative transfer through an exponentially correlated stochastic medium”, Izvestiya, Atmospheric and Oceanic Physics, 48:6 (2012), 618–624 | DOI

[6] Mikhailov G. A., Optimization of Weighted Monte Carlo Methods, Springer, Berlin–Heidelberg, 1992 | MR | MR

[7] Mikhaylov G. A., Voytishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd-vo “Akademiya”, M., 2006

[8] Prigarin S. M., Metody chislennogo modelirovaniya sluchaynykh protsessov i poley, Izd-vo IVMiMG SO RAN, 2005

[9] Yurinskiy V. V., “Ob usrednenii nedivergentnykh uravneniy vtorogo poryadka so sluchaynymi koeffitsientami”, Sib. mat. zhurnal, 23:2 (1982), 176–188 | MR

[10] Ambos A. Yu., Mikhailov G. A., “Statistical simulation of an exponentially correlated many-dimensional random field”, Russ. J. Numer. Anal. Math. Model., 26:3 (2011), 263–273 | DOI | MR | Zbl

[11] Ambos A. Yu., Mikhailov G. A., “New algorithms of numerical-statistical modelling of radiative transfer through stochastic mediums and radiation models homogenization”, Russ. J. Numer. Anal. Math. Model., 29:6 (2014), 331–339 | DOI | MR | Zbl

[12] Coleman W. A., “Mathematical verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems”, Nuclear Science and Engineering (NSE), 32:1 (1968), 76–81 | DOI

[13] Gilbert E. N., “Random subdivisions of space into crystals”, Ann. Math. Statist., 33:3 (1962), 958–972 | DOI | MR | Zbl

[14] Serra J., Image Analysis and Mathematical Morphology, Academic Press inc., London, 1982 | MR | Zbl

[15] Switzer P., “A random set process in the plane with a Markovian property”, Ann. Math. Statist., 36 (1965), 1859–1863 | DOI | MR | Zbl