Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a3, author = {A. Yu. Ambos}, title = {Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {19--32}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/} }
TY - JOUR AU - A. Yu. Ambos TI - Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 19 EP - 32 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/ LA - ru ID - SJVM_2016_19_1_a3 ER -
%0 Journal Article %A A. Yu. Ambos %T Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 19-32 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/ %G ru %F SJVM_2016_19_1_a3
A. Yu. Ambos. Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a3/
[1] Averina T. A., Mikhailov G. A., “Algorithms for exact and approximate statistical simulation of Poisson ensembles”, Computational Mathematics and Mathematical Physics, 50:6 (2010), 951–962 | DOI | MR | Zbl
[2] Zuev V. E., Titov G. A., Optika atmosfery i klimat, v. 9, Izd-vo “Spektr” IOA SO RAN, Tomsk, 1996
[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[4] Marchuk G. I., Mikhaylov G. A., Nazaraliev M. A. i dr., Metody Monte-Karlo v atmosfernoy optike, Nauka, Novosibirsk, 1976
[5] Mikhailov G. A., “Asymptotic estimates of the mean probability of radiative transfer through an exponentially correlated stochastic medium”, Izvestiya, Atmospheric and Oceanic Physics, 48:6 (2012), 618–624 | DOI
[6] Mikhailov G. A., Optimization of Weighted Monte Carlo Methods, Springer, Berlin–Heidelberg, 1992 | MR | MR
[7] Mikhaylov G. A., Voytishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd-vo “Akademiya”, M., 2006
[8] Prigarin S. M., Metody chislennogo modelirovaniya sluchaynykh protsessov i poley, Izd-vo IVMiMG SO RAN, 2005
[9] Yurinskiy V. V., “Ob usrednenii nedivergentnykh uravneniy vtorogo poryadka so sluchaynymi koeffitsientami”, Sib. mat. zhurnal, 23:2 (1982), 176–188 | MR
[10] Ambos A. Yu., Mikhailov G. A., “Statistical simulation of an exponentially correlated many-dimensional random field”, Russ. J. Numer. Anal. Math. Model., 26:3 (2011), 263–273 | DOI | MR | Zbl
[11] Ambos A. Yu., Mikhailov G. A., “New algorithms of numerical-statistical modelling of radiative transfer through stochastic mediums and radiation models homogenization”, Russ. J. Numer. Anal. Math. Model., 29:6 (2014), 331–339 | DOI | MR | Zbl
[12] Coleman W. A., “Mathematical verification of a certain Monte Carlo sampling technique and applications of the technique to radiation transport problems”, Nuclear Science and Engineering (NSE), 32:1 (1968), 76–81 | DOI
[13] Gilbert E. N., “Random subdivisions of space into crystals”, Ann. Math. Statist., 33:3 (1962), 958–972 | DOI | MR | Zbl
[14] Serra J., Image Analysis and Mathematical Morphology, Academic Press inc., London, 1982 | MR | Zbl
[15] Switzer P., “A random set process in the plane with a Markovian property”, Ann. Math. Statist., 36 (1965), 1859–1863 | DOI | MR | Zbl