Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2016_19_1_a10, author = {I. S. Shreifel and I. N. Eliseev}, title = {Theoretical basis of the iterative process of the joint assessment of difficulties in tasks and levels of training students}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {107--123}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a10/} }
TY - JOUR AU - I. S. Shreifel AU - I. N. Eliseev TI - Theoretical basis of the iterative process of the joint assessment of difficulties in tasks and levels of training students JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2016 SP - 107 EP - 123 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a10/ LA - ru ID - SJVM_2016_19_1_a10 ER -
%0 Journal Article %A I. S. Shreifel %A I. N. Eliseev %T Theoretical basis of the iterative process of the joint assessment of difficulties in tasks and levels of training students %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2016 %P 107-123 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a10/ %G ru %F SJVM_2016_19_1_a10
I. S. Shreifel; I. N. Eliseev. Theoretical basis of the iterative process of the joint assessment of difficulties in tasks and levels of training students. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 19 (2016) no. 1, pp. 107-123. http://geodesic.mathdoc.fr/item/SJVM_2016_19_1_a10/
[1] Rasch G., Probabilistic Models for Some Intelligence and Attainment Tests, With a Foreword and Afterword by B. D. Wright, The Univ. of Chicago Press., Chicago–London, 1980
[2] Wright B. S., Masters G. N., Rating Scale Analysis: Rasch Measurement, MESA Press, Chicago, 1982
[3] Eliseev I. N., “Algoritmy iteratsionnykh protsedur vychisleniya otsenok urovnya podgotovki studentov”, Izvestiya vuzov. Elektromekhanika, 2013, no. 3, 83–90
[4] Eliseev I. N., Shrayfel' I. S., “Issledovanie sushchestvovaniya i edinstvennosti otsenok maksimal'nogo pravdopodobiya parametrov latentnykh peremennykh odnoparametricheskoy dikhotomicheskoy modeli Rasha”, Informatizatsiya obrazovaniya i nauki, 2011, no. 3(11), 117–129
[5] Eliseev I. N., Metody, algoritmy i programmnye kompleksy dlya rascheta kharakteristik diagnosticheskikh sredstv nezavisimoy otsenki kachestva obrazovaniya, Monografiya, 2 izd., pererab. i dop., Lik, Novocherkassk, 2013
[6] Eliseev I. N., Sharayfel' I. S., “Model' otsenivaniya latentnykh parametrov dikhotomicheskoy modeli Rasha”, Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki, 2011, no. 6, 37–46
[7] Eliseev I. N., Sharayfel' I. S., “O sostoyatel'nosti dikhotomicheskoy modeli Rasha”, Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki, 2012, no. 5, 127–136
[8] Eliseev I. N., “Teoreticheskie osnovy algoritma rascheta latentnykh peremennykh programmnym kompleksom RILP-1M”, Programmnye produkty i sistemy, 2011, no. 2, 67–71
[9] Eliseev I. N., “Teoreticheskie osnovy algoritma rascheta latentnykh peremennykh programmnym kompleksom RILP-2”, Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki, 2011, no. 3, 3–8
[10] Semov A. M., Semova M. A., Khlebnikov V. A., “Edinyy iteratsionnyy protsess sovmestnoy kolichestvennoy otsenki trudnostey zadaniy i urovney podgotovlennosti uchastnikov testirovaniya”, Tr. Tsentra testirovaniya, 2, Prometey, M., 1999, 54–60
[11] Khorn R., Dzhonson Ch., Matrichnyy analiz, Per. s angl., Mir, M., 1989 | MR
[12] Il'in V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Chast' I, Uchebnik dlya vuzov, 7-e izd., FIZMATLIT, M., 2005