A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 453-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an implicit method of decomposition of $7$-th degree Hermite splines to a series of “lazy” wavelets with displaced supports is investigated. A splitting algorithm for wavelet transforms of solving four five-diagonal systems of linear equations with a strict diagonal dominance in parallel is justified. Results of numerical experiments on exactness for polynomials and on compression of spline-wavelet decomposition are presented.
@article{SJVM_2015_18_4_a8,
     author = {B. M. Shumilov},
     title = {A splitting algorithm for wavelet transforms of the {Hermite} splines of the seventh degree},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {453--467},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 453
EP  - 467
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/
LA  - ru
ID  - SJVM_2015_18_4_a8
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 453-467
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/
%G ru
%F SJVM_2015_18_4_a8
B. M. Shumilov. A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 453-467. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/

[1] Dobeshi I., Desyat' lektsij po vejvletam, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[2] Lyche T., M\'ørken K., Pelosi F., “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Computer Aided Geometric Design, 26 (2009), 203–216 | DOI | MR | Zbl

[3] Sweldens W., Schroder P., “Building your own wavelets at home”, Wavelets in Computer Graphics, ACM SIGGRAPH Course notes, 1996, 15–87

[4] Sweldens W., “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Applied and Computational Harmonic Analysis, 3:2 (1996), 186–200 | DOI | MR | Zbl

[5] Warming R., Beam R., “Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets”, SIAM J. Sci. Comp., 22:1 (2000), 269–317 | MR

[6] Stolnits E., DeRouz T., Salezin D., Vejvlety v komp'yuternoj grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[7] Strela V., Multiwavelets: Theory and Applications, Thesis PHD in Mathematics, Cambridge, Massachusetts, 1996 | MR

[8] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl

[9] Shumilov B. M., Matanov Sh. M., “Algoritm s rasshchepleniem vejvlet-preobrazovaniya splajnov pervoj stepeni”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitel'naya tekhnika i informatika, 2011, no. 3, 51–57

[10] Shumilov B. M., “ ‘Lenivye’ vejvlety ermitovykh kubicheskikh splajnov i algoritm s rasshchepleniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitel'naya tekhnika i informatika, 2011, no. 1, 64–72

[11] Shumilov B. M., Esharov E. A., Kuduev A. Zh., Ymanov U. S., “Mul'tivejvlet pyatoj stepeni”, Izvestiya Tomskogo politekhnicheskogo universiteta, 320:5 (2012), 54–59

[12] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splajn-funktsij, Nauka, M., 1980 | MR

[13] Shumilov B. M., “Algoritm s rasshchepleniem vejvlet-preobrazovaniya ermitovykh kubicheskikh splajnov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55

[14] Arandiga F., Baeza A., Donat R., “Discrete multiresolution based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl