Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_4_a8, author = {B. M. Shumilov}, title = {A splitting algorithm for wavelet transforms of the {Hermite} splines of the seventh degree}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {453--467}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/} }
TY - JOUR AU - B. M. Shumilov TI - A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 453 EP - 467 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/ LA - ru ID - SJVM_2015_18_4_a8 ER -
B. M. Shumilov. A splitting algorithm for wavelet transforms of the Hermite splines of the seventh degree. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 453-467. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a8/
[1] Dobeshi I., Desyat' lektsij po vejvletam, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[2] Lyche T., M\'ørken K., Pelosi F., “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Computer Aided Geometric Design, 26 (2009), 203–216 | DOI | MR | Zbl
[3] Sweldens W., Schroder P., “Building your own wavelets at home”, Wavelets in Computer Graphics, ACM SIGGRAPH Course notes, 1996, 15–87
[4] Sweldens W., “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Applied and Computational Harmonic Analysis, 3:2 (1996), 186–200 | DOI | MR | Zbl
[5] Warming R., Beam R., “Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets”, SIAM J. Sci. Comp., 22:1 (2000), 269–317 | MR
[6] Stolnits E., DeRouz T., Salezin D., Vejvlety v komp'yuternoj grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[7] Strela V., Multiwavelets: Theory and Applications, Thesis PHD in Mathematics, Cambridge, Massachusetts, 1996 | MR
[8] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl
[9] Shumilov B. M., Matanov Sh. M., “Algoritm s rasshchepleniem vejvlet-preobrazovaniya splajnov pervoj stepeni”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitel'naya tekhnika i informatika, 2011, no. 3, 51–57
[10] Shumilov B. M., “ ‘Lenivye’ vejvlety ermitovykh kubicheskikh splajnov i algoritm s rasshchepleniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitel'naya tekhnika i informatika, 2011, no. 1, 64–72
[11] Shumilov B. M., Esharov E. A., Kuduev A. Zh., Ymanov U. S., “Mul'tivejvlet pyatoj stepeni”, Izvestiya Tomskogo politekhnicheskogo universiteta, 320:5 (2012), 54–59
[12] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splajn-funktsij, Nauka, M., 1980 | MR
[13] Shumilov B. M., “Algoritm s rasshchepleniem vejvlet-preobrazovaniya ermitovykh kubicheskikh splajnov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55
[14] Arandiga F., Baeza A., Donat R., “Discrete multiresolution based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl