Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_4_a6, author = {G. I. Rudoy}, title = {On applying {Monte} {Carlo} methods to analysis of nonlinear regression models}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {425--434}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a6/} }
TY - JOUR AU - G. I. Rudoy TI - On applying Monte Carlo methods to analysis of nonlinear regression models JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 425 EP - 434 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a6/ LA - ru ID - SJVM_2015_18_4_a6 ER -
G. I. Rudoy. On applying Monte Carlo methods to analysis of nonlinear regression models. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 425-434. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a6/
[1] Davidson J. W., Savic D. A., Walters G. A., “Symbolic and numerical regression: experiments and applications”, Developments in Soft Computing, 9, eds. John Robert, Birkenhead Ralph, Physica Verlag, Heidelberg, Germany, 2001, 175–182 | DOI
[2] Sammut C., Webb G. I., “Symbolic Regression”, Encyclopedia of Machine Learning, eds. C. Sammut, G. I. Webb, Springer-Verlag, Berlin, 2010 | DOI | Zbl
[3] Strijov V., Weber G. W., “Nonlinear regression model generation using hyperparameter optimization”, Mathematics with Applications, 60:4 (2010), 981–988 | DOI | MR | Zbl
[4] Strijov V. V., Metody induktivnogo porozhdeniya regressionnykh modelej, Preprint, VTs RAN im. A. A. Dorodnitsyna, Moskva, 2008
[5] Rudoy G. I., Strijov V. V., “Algoritmy induktivnogo porozhdeniya superpozitsij dlya approksimatsii izmeryaemykh dannykh”, Informatika i ee primeneniya, 7:1 (2013), 44–53
[6] Vatutin V. A., Ivchenko G. I., Medvedev Yu. I., Chistyakov V. P., Teoriya veroyatnostej i matematicheskaya statistika v zadachakh, Izd-nie 3, Drofa, M., 2005
[7] Marquardt D. W., “An algorithm for least-squares estimation of non-linear parameters”, J. of the Society of Industrial and Applied Mathematics, 11:2 (1963), 431–441 | DOI | MR | Zbl
[8] More J. J., “The Levenberg-Marquardt algorithm: Implementation and theory”, Numerical Analysis, Lect. Notes in Mathematics, 630, ed. G. A. Watson, Springer-Verlag, Berlin, 1978, 105–116 | DOI | MR
[9] Pearson K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine, 2:6 (1901), 559–572 | DOI | Zbl