A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 389-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we discuss a new single sweep compact alternating group explicit method for the solution of time dependent viscous Burgers' equation both in Cartesian and polar coordinates. An error analysis for the new iterative method is discussed in detail. We have compared the results of the proposed iterative method with the results of a corresponding double sweep alternating group explicit (AGE) iterative method to demonstrate computationally the efficiency of the proposed method.
@article{SJVM_2015_18_4_a4,
     author = {R. K. Mohanty and J. Talwar},
     title = {A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous {Burgers'} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {389--405},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/}
}
TY  - JOUR
AU  - R. K. Mohanty
AU  - J. Talwar
TI  - A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 389
EP  - 405
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/
LA  - ru
ID  - SJVM_2015_18_4_a4
ER  - 
%0 Journal Article
%A R. K. Mohanty
%A J. Talwar
%T A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 389-405
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/
%G ru
%F SJVM_2015_18_4_a4
R. K. Mohanty; J. Talwar. A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 389-405. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/

[1] Mohanty R. K., “An $O(k^2+h^4)$ finite difference method for one-space Burgers' equation in polar coordinates”, Numer. Meth. Partial Diff. Eq., 12 (1996), 579–583 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] Mohanty R. K., Evans D. J., “Alternating group explicit parallel algorithms for the solution of one-space dimensional non-linear singular parabolic equations using an $O(k^2+h^4)$ difference method”, Int. J. Comput. Math., 82 (2005), 203–218 | DOI | MR | Zbl

[3] Evans D. J., Sahimi M. S., “The alternating group explicit (AGE) iterative method for solving parabolic equations, 1-2 dimensional problems”, Int. J. Comput. Math., 24 (1988), 250–281

[4] Mohanty R. K., Jain M. K., Kumar D., “Single cell finite difference approximations of $O(kh^2+h^4)$ for $(\partial u/\partial n)$ for one space dimensional nonlinear parabolic equation”, Numer. Meth. Partial Diff. Eq., 16 (2000), 408–415 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[5] Evans D. J., Mohanty R. K., “Alternating group explicit method for the numerical solution of non-linear singular two-point boundary value problems using a fourth order finite difference method”, Int. J. Comput. Math., 79:10 (2002), 1121–1133 | DOI | MR | Zbl

[6] Evans D. J., “Iterative methods for solving non-linear two point boundary value problems”, Int. J. Comput. Math., 72 (1999), 395–401 | DOI | MR | Zbl

[7] Smith G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press, Oxford, 1996 | MR

[8] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[9] Aksan E. N., Ozdes A., “A numerical solution of Burgers solution”, Appl. Math. Comput., 156 (2004), 395–402 | DOI | MR | Zbl

[10] Evans D. J., Abdullah A. R., “The group explicit method for the solution of Burger's equation”, Computing, 32 (1984), 239–253 | DOI | MR | Zbl

[11] Ozis T., Ozdes A., “A direct variational method applied to Burgers' equation”, J. Comput. Appl. Math., 71 (1996), 163–175 | DOI | MR | Zbl

[12] Ozis T., Aksan E. N., Ozdes A., “A finite element approach for solution of Burgers' equation”, Appl. Math. Comput., 139 (2003), 417–428 | DOI | MR | Zbl

[13] Mittal R. C., Singhal P., “Numerical solution of Burger's equation”, Communications in Numerical Methods in Engineering, 9 (1993), 397–406 | DOI | MR | Zbl

[14] Salkuyeh D. K., Sharafeh F. S., “On the numerical solution of the Burgers's equation”, Int. J. Comput. Math., 86:8 (2009), 1334–1344 | DOI | MR | Zbl

[15] Hon Y. C., Mao X. Z., “An efficient numerical scheme for Burgers' equation”, Appl. Math. Comput., 95 (1998), 37–50 | DOI | MR | Zbl

[16] Burger J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Math., 1947, no. 1, 171–179 | MR

[17] Kadalbajoo M. K., Awasthi A., “A numerical method based on Crank–Nicolson scheme for Burgers' equation”, Appl. Math. Comput., 182 (2006), 1430–1442 | DOI | MR | Zbl

[18] Aksan E. N., “A numerical solution of Burgers' equation by finite element method constructed on the method of discretization in time”, Appl. Math. Comput., 170:2 (2005), 895–904 | DOI | MR | Zbl

[19] Khalifa A. K., Noor K. I., Noor M. A., “Some numerical methods for solving Burgers' equation”, Int. J. of the Physical Sciences, 6:7 (2011), 1702–1710