Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_4_a4, author = {R. K. Mohanty and J. Talwar}, title = {A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous {Burgers'} equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {389--405}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/} }
TY - JOUR AU - R. K. Mohanty AU - J. Talwar TI - A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 389 EP - 405 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/ LA - ru ID - SJVM_2015_18_4_a4 ER -
%0 Journal Article %A R. K. Mohanty %A J. Talwar %T A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2015 %P 389-405 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/ %G ru %F SJVM_2015_18_4_a4
R. K. Mohanty; J. Talwar. A new compact alternating group explicit iteration method for the solution of nonlinear time-dependent viscous Burgers' equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 389-405. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a4/
[1] Mohanty R. K., “An $O(k^2+h^4)$ finite difference method for one-space Burgers' equation in polar coordinates”, Numer. Meth. Partial Diff. Eq., 12 (1996), 579–583 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Mohanty R. K., Evans D. J., “Alternating group explicit parallel algorithms for the solution of one-space dimensional non-linear singular parabolic equations using an $O(k^2+h^4)$ difference method”, Int. J. Comput. Math., 82 (2005), 203–218 | DOI | MR | Zbl
[3] Evans D. J., Sahimi M. S., “The alternating group explicit (AGE) iterative method for solving parabolic equations, 1-2 dimensional problems”, Int. J. Comput. Math., 24 (1988), 250–281
[4] Mohanty R. K., Jain M. K., Kumar D., “Single cell finite difference approximations of $O(kh^2+h^4)$ for $(\partial u/\partial n)$ for one space dimensional nonlinear parabolic equation”, Numer. Meth. Partial Diff. Eq., 16 (2000), 408–415 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[5] Evans D. J., Mohanty R. K., “Alternating group explicit method for the numerical solution of non-linear singular two-point boundary value problems using a fourth order finite difference method”, Int. J. Comput. Math., 79:10 (2002), 1121–1133 | DOI | MR | Zbl
[6] Evans D. J., “Iterative methods for solving non-linear two point boundary value problems”, Int. J. Comput. Math., 72 (1999), 395–401 | DOI | MR | Zbl
[7] Smith G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press, Oxford, 1996 | MR
[8] Hopf E., “The partial differential equation $u_t+uu_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[9] Aksan E. N., Ozdes A., “A numerical solution of Burgers solution”, Appl. Math. Comput., 156 (2004), 395–402 | DOI | MR | Zbl
[10] Evans D. J., Abdullah A. R., “The group explicit method for the solution of Burger's equation”, Computing, 32 (1984), 239–253 | DOI | MR | Zbl
[11] Ozis T., Ozdes A., “A direct variational method applied to Burgers' equation”, J. Comput. Appl. Math., 71 (1996), 163–175 | DOI | MR | Zbl
[12] Ozis T., Aksan E. N., Ozdes A., “A finite element approach for solution of Burgers' equation”, Appl. Math. Comput., 139 (2003), 417–428 | DOI | MR | Zbl
[13] Mittal R. C., Singhal P., “Numerical solution of Burger's equation”, Communications in Numerical Methods in Engineering, 9 (1993), 397–406 | DOI | MR | Zbl
[14] Salkuyeh D. K., Sharafeh F. S., “On the numerical solution of the Burgers's equation”, Int. J. Comput. Math., 86:8 (2009), 1334–1344 | DOI | MR | Zbl
[15] Hon Y. C., Mao X. Z., “An efficient numerical scheme for Burgers' equation”, Appl. Math. Comput., 95 (1998), 37–50 | DOI | MR | Zbl
[16] Burger J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Math., 1947, no. 1, 171–179 | MR
[17] Kadalbajoo M. K., Awasthi A., “A numerical method based on Crank–Nicolson scheme for Burgers' equation”, Appl. Math. Comput., 182 (2006), 1430–1442 | DOI | MR | Zbl
[18] Aksan E. N., “A numerical solution of Burgers' equation by finite element method constructed on the method of discretization in time”, Appl. Math. Comput., 170:2 (2005), 895–904 | DOI | MR | Zbl
[19] Khalifa A. K., Noor K. I., Noor M. A., “Some numerical methods for solving Burgers' equation”, Int. J. of the Physical Sciences, 6:7 (2011), 1702–1710