Oligopolistic interacting markets
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 361-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of several interacting Cournot markets is considered. The markets are named interacting because the same number of producers act on each of them. Every producer chooses his own supply volumes on every market using the price situations, his own costs and production and delivery limitations. It is proved that in the case of the linear demand functions the problem of finding the Nash equilibria in the interacting Cournot markets model represents a potential game, i.e. it is equivalent to a mathematical programming problem. Nonlinear demand functions linearization procedures and preferences of initial problem reduction to the potential game are discussed.
@article{SJVM_2015_18_4_a1,
     author = {V. I. Zorkaltsev and M. A. Kiseleva},
     title = {Oligopolistic interacting markets},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--368},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a1/}
}
TY  - JOUR
AU  - V. I. Zorkaltsev
AU  - M. A. Kiseleva
TI  - Oligopolistic interacting markets
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 361
EP  - 368
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a1/
LA  - ru
ID  - SJVM_2015_18_4_a1
ER  - 
%0 Journal Article
%A V. I. Zorkaltsev
%A M. A. Kiseleva
%T Oligopolistic interacting markets
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 361-368
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a1/
%G ru
%F SJVM_2015_18_4_a1
V. I. Zorkaltsev; M. A. Kiseleva. Oligopolistic interacting markets. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 4, pp. 361-368. http://geodesic.mathdoc.fr/item/SJVM_2015_18_4_a1/

[1] Bergstrom T. C., Varian H. R., “Two remarks on Cournot equilibria”, Economic Letters, 19 (1985), 5–8 | DOI | MR

[2] Margaret E., “Slade what does an oligopoly maximize?”, J. of Industrial Economics, 42:1 (1994), 45–61 | DOI

[3] Monderer D., Shapley L., “Potential games”, Games and Economic Behavior, 14 (1996), 124–143 | DOI | MR | Zbl

[4] Kukushkin N., “Congestion games revisited”, Int. J. Game Theory, 36 (2007), 57–83 | DOI | MR | Zbl

[5] Zorkal'tsev V. I., Kiseleva M. A., “Ravnovesie Nesha proizvodstvennykh planov”, Sovremennye tekhnologii. Sistemnyj analiz. Modelirovanie, 2009, no. 3, 219–224

[6] Zorkal'tsev V. I., Kiseleva M. A., Oligopol'nye i oligopsonnye vzaimosvyazannye rynki, Preprint, ISEM SO RAN, Irkutsk, 2014

[7] Zorkal'tsev V. I., Kiseleva M. A., Sistemy linejnykh neravenstv, Uchebnoe posobie, Izd-vo Irkut. gos. universiteta, Irkutsk, 2007