Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_3_a7, author = {M. S. Tarkov}, title = {Solving the traveling salesman problem using a~recurrent neural network}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {337--347}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a7/} }
TY - JOUR AU - M. S. Tarkov TI - Solving the traveling salesman problem using a~recurrent neural network JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 337 EP - 347 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a7/ LA - ru ID - SJVM_2015_18_3_a7 ER -
M. S. Tarkov. Solving the traveling salesman problem using a~recurrent neural network. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 337-347. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a7/
[1] Lin S., Kernigan B. W., “An effective heuristic algorithm for the travelling salesman problem”, Oper. Res., 21:2 (1973), 498–516 | DOI | MR | Zbl
[2] Helsgaun K., “An effective implementation of the Lin–Kernighan traveling salesman heuristic”, European J. of Oper. Res., 126 (2000), 106–130 | DOI | MR | Zbl
[3] Helsgaun K., “General $k$-opt submoves for the Lin–Kernighan TSP heuristic”, Math. Prog. Comp., 1 (2009), 119–163 | DOI | MR | Zbl
[4] LKH Version 2.0.7, , November, 2012 http://www.akira.ruc.dk/~keld/research/LKH/lkh.exe
[5] TSPLIB, http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
[6] Efimov V. V., Kozyrev G. I. i dr., Nejrokomp'yutery v kosmicheskoj tekhnike, Kn. 17, ed. V. V. Efimov, Radiotekhnika, M., 2004
[7] Hopfield J. J., Tank D. W., “ ‘Neural’ computation of decisions in optimization problems”, Biological Cybernetics, 52:3 (1985), 141–152 | MR | Zbl
[8] Smith K. A., “Neural networks for combinatorial optimization: a review of more than a decade of research”, INFORMS J. on Computing, 11:1 (1999), 15–34 | DOI | MR | Zbl
[9] Feng G., Douligeris C., “Using hopfield networks to solve traveling salesman problems based on stable state analysis technique”, Proc. Int. Joint Conf. Neural networks, 6 (2000), 521–526
[10] Ageev A. D., Balukhto A. N., Bychkov A. V. i dr., Nejromatematika, Kn. 6, ed. A. I. Galushkin, IPRZhR, M., 2002
[11] Wang J., “Analysis and design of a recurrent neural network for linear programming”, IEEE Trans. On Circuits and Systems-I: Fundamental Theory and Applications, 40:9 (1993), 613–618 | DOI | Zbl
[12] Hung D. L., Wang J., “Digital hardware realization of a recurrent neural network for solving the assignment problem”, Neurocomputing, 51 (2003), 447–461 | DOI
[13] Siqueira P. H., Steiner M. T. A., Scheer S., “A new approach to solve the travelling salesman problem”, Neurocomputing, 70 (2007), 1013–1021 | DOI
[14] Tarkov M. S., Dugarov G. A., “Parallel'nyj algoritm resheniya zadachi kommivoyazhera s ispol'zovaniem rekurrentnoj nejronnoj seti”, Problemy informatiki, 2010, no. 2, 4–9
[15] Tarkov M. S., “Postroenie gamil'tonovykh tsiklov v grafakh raspredelennykh vychislitel'nykh sistem rekurrentnymi nejronnymi setyami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 13:4 (2010), 467–475 | Zbl
[16] Tarkov M. S., “Ob effektivnosti postroeniya gamil'tonovykh tsiklov v grafakh raspredelennykh vychislitel'nykh sistem rekurrentnymi nejronnymi setyami”, Upravlenie bol'shimi sistemami, 43, IPU RAN, M., 2013, 157–171
[17] Boreskov A. V., Kharlamov A. A., Osnovy raboty s tekhnologiej CUDA, DMK Press, M., 2011