An inverse eigenvalue problem for a~class of matrices of second and third orders
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 319-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for solving the inverse eigenvalue problem for the product of matrices of second and third orders is proposed. The necessary and sufficient conditions for the existence of the problem solution have been obtained.
@article{SJVM_2015_18_3_a5,
     author = {E. A. Perepelkin},
     title = {An inverse eigenvalue problem for a~class of matrices of second and third orders},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {319--326},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/}
}
TY  - JOUR
AU  - E. A. Perepelkin
TI  - An inverse eigenvalue problem for a~class of matrices of second and third orders
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 319
EP  - 326
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/
LA  - ru
ID  - SJVM_2015_18_3_a5
ER  - 
%0 Journal Article
%A E. A. Perepelkin
%T An inverse eigenvalue problem for a~class of matrices of second and third orders
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 319-326
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/
%G ru
%F SJVM_2015_18_3_a5
E. A. Perepelkin. An inverse eigenvalue problem for a~class of matrices of second and third orders. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 319-326. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/

[1] Chu M., Golub G., Inverse Eigenvalue Problems. Theory, Algorithms, and Application., Science Publications Oxford University Press, Oxford, 2005 | MR

[2] Aeyels D., Willems J., “Pole assignment for linear time-invariant systems by periodic memoryless output feedback”, Automatica, 28:6 (1992), 1159–1168 | DOI | MR | Zbl

[3] Sontag E. D., Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in applied mathematics, 6, Springer-Verlag, New York, 1998 | DOI | MR | Zbl