Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_3_a5, author = {E. A. Perepelkin}, title = {An inverse eigenvalue problem for a~class of matrices of second and third orders}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {319--326}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/} }
TY - JOUR AU - E. A. Perepelkin TI - An inverse eigenvalue problem for a~class of matrices of second and third orders JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 319 EP - 326 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/ LA - ru ID - SJVM_2015_18_3_a5 ER -
E. A. Perepelkin. An inverse eigenvalue problem for a~class of matrices of second and third orders. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 319-326. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a5/
[1] Chu M., Golub G., Inverse Eigenvalue Problems. Theory, Algorithms, and Application., Science Publications Oxford University Press, Oxford, 2005 | MR
[2] Aeyels D., Willems J., “Pole assignment for linear time-invariant systems by periodic memoryless output feedback”, Automatica, 28:6 (1992), 1159–1168 | DOI | MR | Zbl
[3] Sontag E. D., Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in applied mathematics, 6, Springer-Verlag, New York, 1998 | DOI | MR | Zbl