Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 255-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, experience in the conducted investigation of the stochastic cellular automata models of forming stable oscillations and autowaves in active media is generalized. As a result, the concept of stochastic cellular automaton (CA), corresponding to the asynchronous CA with probabilistic transition rules, is formulated. The formal notions of a stochastic CA and a stochastic CA model are given. Properties of the CA models and methods of their synthesis, using a specified set of elementary physical and chemical transformations, are described. The possibility of the autowave and oscillatory processes simulation is shown on an example of the carbon monoxide oxidation reaction on the platinum catalyst with reconstructing its surface structure. The CA-simulation enabled to reveal the range of reaction parameters values, at which stable oscillations of the reagents concentration occur, and to observe autowaves over the platinum surface. Considerable attention has been given to a high efficiency of the stochastic CA parallel implementation, which demands preliminary transformation of the asynchronous mode to the block-synchronous one with validation of its equivalence to the asynchronous mode. The latter is done for the investigated reaction CA model by means of the comparative statistical analysis of the simulation results.
@article{SJVM_2015_18_3_a1,
     author = {O. L. Bandman and A. E. Kireeva},
     title = {Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {255--274},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a1/}
}
TY  - JOUR
AU  - O. L. Bandman
AU  - A. E. Kireeva
TI  - Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 255
EP  - 274
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a1/
LA  - ru
ID  - SJVM_2015_18_3_a1
ER  - 
%0 Journal Article
%A O. L. Bandman
%A A. E. Kireeva
%T Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 255-274
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a1/
%G ru
%F SJVM_2015_18_3_a1
O. L. Bandman; A. E. Kireeva. Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 3, pp. 255-274. http://geodesic.mathdoc.fr/item/SJVM_2015_18_3_a1/

[1] Kolmogorov A. N., Petrovskij I. G., Piskunov I. S., “Issledovanie uravneniya diffuzii, soedinennoj s vozrastaniem kolichestva veshchestva i ego primenenie k odnoj biologicheskoj probleme”, Byulleten' MGU. Sektsiya A, 6, Izd-vo MGU, M., 1937, 1–25

[2] Fisher R. A., The Genetical Theory of Natural Selection, Oxford Univ. Press, Oxford, 1930 | MR | Zbl

[3] Turing A. M., “The chemical basis of morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 237:641 (1952), 37–72 | DOI

[4] Belousov B. P., “Periodicheski dejstvuyushchaya reaktsiya i ee mekhanizm”, Sb. referatov po radiatsionnoj meditsine za 1958 g., Medgiz, M., 1959, 145–147

[5] Zhabotinskij A. M., Kontsentratsionnye kolebaniya, Nauka, M., 1974

[6] Prigozhin I., Nikolis G., Samoorganizatsiya v neravnovesnykh sistemakh: ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii, Mir, M., 1979

[7] Boccara N., Reaction-Difusion Complex Systems, Springer, Berlin, 2004 | MR

[8] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh. Eksperiment i teoriya, IKI, Izhevsk, 2008

[9] Vanag V. K., “Issledovanie prostranstvenno-raspredelennykh dinamicheskikh sistem metodami veroyatnostnogo kletochnogo avtomata”, Uspekhi fizicheskikh nauk, 169:5 (1999), 481–505 | DOI

[10] Elokhin V. I., Matveev I. I., Gorodetskij V. V., “Avtokolebaniya i khimicheskie volny v reaktsii okisleniya CO na Pt i Pd: kineticheskie modeli Monte-Karlo”, Kinetika i kataliz, 50:1 (2009), 45–53

[11] Elokhin V. I., Sharifulina A. E., “Simulation of heterogeneous catalytic reaction by asynchronous cellular automata on multicomputer”, Proc. of PaCT 2011, Lect. Notes Comput. Sci., 6873, Springer, Berlin, 2011, 204–209 | DOI

[12] Bandman O. L., “Diskretnye metody modelirovaniya fiziko-khimicheskikh protsessov”, Prikladnaya diskretnaya matematika, 2009, no. 3, 33–49

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Majer A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR

[14] Manfred Opper, David Saad (eds.), Advanced Mean Field Methods, Theory and Practice, The MIT Press, 2001 | MR

[15] Fon Nejman Dzh., Teoriya samovosproizvodyashchikhsya avtomatov, Mir, M., 1971

[16] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoj dinamiki”, Sistemnaya informatika: sb. nauchn. tr., 10, RAN. Sib. otd-nie, Novosibirsk, 2006, 59–111

[17] Wolfram S., “Statistical mechanics of cellular automata”, Review of Modern Physics, 55 (1993), 607–640 | MR

[18] Toffoli T., “Cellular automata as an alternative to (rather than approximation of) differential equations in modeling physics”, Physica D, 10 (1984), 117–127 | DOI | MR

[19] Toffoli T., Margolus N., Cellular Automata Mashines. A new Environment for Modeling, The MIT Press, 1987

[20] Malinetskij G. G., Stepantsov M. E., “Modelirovanie diffuzionnykh protsessov kletochnymi avtomatami”, Zhurn. vychisl. matem. i mat. fiziki, 38:6 (1998), 1017–1021 | MR | Zbl

[21] Wolfram S., A New Kind of Science, Wolfram Media Inc., 2002 | MR | Zbl

[22] Wolfram S., “Universality and complexity in cellular automata”, Physica D, 1 (1984), 91–125 | MR

[23] Frish U., Hasslacher B., Pomeau Y., “Lattice-gas automata for Navier–Stokes equation”, Phys. Rev. Lett., 56 (1986), 1505–1508 | DOI

[24] Boccara N., “Phase-transition in cellular automata”, Computation Complexity, Springer, Berlin, 2012, 2157–2167 | DOI | MR

[25] Sirakoulis G. Ch., Karafyllidis I., Thanailakis A., “A cellular automaton model for the effect of population movement on epidemic propagation”, Ecological Modelling, 133:3 (2000), 209–223 | DOI

[26] Afanas'ev I. V., “Kletochno-avtomatnaya model' dinamiki populyatsij trekh vidov organizmov ozera Bajkal”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 17:3 (2014), 217–227

[27] Chowdhury D., Nishinary K., Schadschneider A., “CA modeling of ant-traffic on trails”, Simulating Complex Systems by Cellular Automata, eds. oekstra A., Kroc J., Sloot P. M. A., Springer, Berlin, 2010, 275–300 | DOI

[28] Jansen A. P. J., An Introduction to Monte Carlo Simulations of Surface Reactions, 2003, arXiv: cond-mat/0303028v1[cond-mat.stat-mech]

[29] Latkin E. I., Elokhin V. I., Gorodetskii V. V., “Monte Carlo model of oscillatory CO oxidation having regard to the change of catalytic properties due to the adsorbate induced Pt(100) structural transformation”, J. of Molecular Catalysis A: Chemical, 166 (2001), 23–30 | DOI

[30] Bandman O., “Cellular automata composition techniques for spatial dynamics simulation”, Simulating Complex Systems by Cellular Automata. Understanding complex Systems, eds. Hoekstra A., Kroc J., Sloot P. M. A., Springer, Berlin, 2010, 81–115 | DOI | Zbl

[31] Achasova S., Bandman O., Markova V., Piskunov S., Parallel Substitution Algorithm. Theory and Application, World Scientific, Singapore, 1994 | Zbl

[32] Kalgin K. V., “Domain specific language and translator for cellular automata models of physico-chemical processes”, Parallel Computing Technologies, Lect. Notes Comput. Sci., 6873, Springer, Berlin, 2011, 172–180

[33] Elliott R. J., Aggoun L., Moore J. B., Hidden Markov Models. Estimation and Control, Springer, Berlin, 2008 | MR

[34] Achasova S. M., Bandman O. L., Korrektnost' parallel'nykh protsessov, Nauka, Novosibirsk, 1998

[35] Kalgin K. V., “Kletochno-avtomatnoe modelirovanie fiziko-khimicheskikh protsessov nano-urovnya na graficheskikh uskoritelyakh”, Tr. Mezhd. nauch. konf. PaVT'2013, Izdatel'skij tsentr YUUrGU, Chelyabinsk, 2013, 146–154

[36] Bandman O., “Parallel simulation of asynchronous cellular automata evolution”, Proc. ACRI-2006, Lect. Notes Comput. Sci., 4173, Springer, Berlin, 41–47 | DOI | MR | Zbl

[37] Imbihl R., Ertl G., “Oscillatory kinetics in heterogeneous catalysis”, Chemical Reviews, 95:3 (1995), 697–733 | DOI

[38] Sharifulina (Kireeva) A. E., “Parallel'naya realizatsiya kataliticheskoj reaktsii ($\mathrm{CO+O_2\to CO}_2$)s pomoshch'yu asinkhronnogo kletochnogo avtomata”, Vestnik YUUrGU, 2012, no. 47(306), 112–126

[39] Kalgin K. V., “Parallel'naya realizatsiya asinkhronnykh kletochnykh avtomatov na 32-yadernoj vychislitel'noj sisteme”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:1 (2012), 55–65 | Zbl

[40] Overeinder B. J., Sloot P. M. A., “Application of time warp to parallel simulations with asynchronous cellular automata”, Proc. European Simulation Symposium, Delft, The Netherlands, 1993, 397–402